• Title/Summary/Keyword: 2D Imaging

Search Result 1,176, Processing Time 0.035 seconds

A New Method for Extending Doppler Mean Frequency in Ultrasonic Imaging Systems (초음파 영상 시스템에서 새로운 도플러 평균주파수 확장 방법)

  • Kwon, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1047-1056
    • /
    • 2007
  • Basically, an ultrasonic imaging system has two fundamental imaging modes available. One is the B-mode imaging modality which provides an image of reflection coefficient, and the other is the Doppler color flow mode that maps blood flow inside the human heart and blood vessels. This paper presents a new method of detecting and compensating for aliasing that occurs when the Doppler frequency exceeds one-half of the pulse-repetition frequency (PRF). Its validity is shown by computer simulation. The new method not only extends the measurable Doppler frequency, but also helps to reduce the effect of noise. The results show that the aliasing can be compensated for correctly fur signal-to-noise ratios down to 20 dB.

  • PDF

Visualization of Brain Vessel for MRA Image (MRA영상에서 뇌혈관의 가시화)

  • 김영철;김령주;남상희;문치웅;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.286-289
    • /
    • 2002
  • 뇌 혈관 영상은 2D로 되어있어 임상에서 뇌의 이상 유무와 질병의 진행 정도를 판별하는데 어려움이 있다. Volume Rendering은 2차원 데이터를 3차원 영상으로 재구성하여 오브젝트의 내부 모습을 3차원으로 볼 수 있게 해주는 장점이 있어 진단에 도움을 줄 수가 있다. MRA(Magnetic Resonance Angiography) 는 MRI(Magnetic Resonance Imaging)을 이용하여 Vascular Imaging 하는 기법이다. MRA 혈관 영상을 가시화하는 방법으로 MIP(Maximum Intensity Projection)를 이용하였다. 본 논문에서는 256×256 크기의 MRA영상 48장을 MIP 로 볼륨 랜더링하여 뇌 혈관 영상을 3차원으로 가시화 하였다.

  • PDF

A Design of Improved 100 GHz Lens Antennas for the ECEI System (ECEI 장치를 위한 향상된 성능의 100 GHz 렌즈 안테나 설계)

  • Lee, Gwan-Hee;Kim, Sung-Kyun;Mohyuddin, Wahab;Choi, Hyun-Chul;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.817-824
    • /
    • 2016
  • In this paper, a modified elliptical lens antenna design is proposed to improve the performance of 100 GHz mini-lens antennas used in the ECEI(Electron Cyclotron Emission Imaging) module at KSTAR. A hemispherical lens is added on the bottom plate of the conventional elliptic lens antenna, and a 100 GHz dipole antenna is located on the end point of the hemispherical lens. Using geometrical optics, antenna radiated EM fields are designed to be totally reflected from the inner surface of the hemispherical lens, and thereby the antenna patterns are more focused toward the main beam. The validity of the proposed design is confirmed by the 3D EM simulator. The modified elliptical lens antenna provides 23.8 dB maximum gain, which is 2.2 dB gain improvement as compared with the conventional elliptic lens. Also, the side love levels of E- and H-planes are decreased by 2.6 dB and 3.4 dB, respectively.

Study Of Millimeter-Wave Passive Imaging Sensor Using the Horn Array Antenna (혼 배열 안테나를 이용한 밀리미터파 수동 이미징 센서 연구)

  • Lim, Hyun-Jun;Chae, Yeon-Sik;Kim, Mi-Ra;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.74-79
    • /
    • 2010
  • We have designed a millimeter-wave passive imaging sensor with multi-horn antenna array. Six horn array antenna is suggested that it is integrated into one housing, and this antenna is effectively configurated m space to assemble with LNA of WR-10 structure. Antenna is designed to have the peak gain of 17.5dBi at the center frequency of 94GHz, and the return loss of less than -25dB in W-band, and the small aperture size of $6mm{\times}9mm$ for antenna configuration with high resolution. LNA is designed to have total gain of more than 55dB and noise figure of less than 5dB for good sensitivity. We made a detector for DC output translation of millimeter-wave signal with zero bias Schottky diode. It is shown that good sensitivity of more than 500mV/mW.

Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system

  • Kim, Soo-Hwan;Jung, Woo-Young;Seo, Yu-Jin;Kim, Kyung-A;Park, Ki-Ho;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.45 no.3
    • /
    • pp.105-112
    • /
    • 2015
  • Objective: A recently developed facial scanning method uses three-dimensional (3D) surface imaging with a light-emitting diode. Such scanning enables surface data to be captured in high-resolution color and at relatively fast speeds. The purpose of this study was to evaluate the accuracy and precision of 3D images obtained using the Morpheus 3D$^{(R)}$ scanner (Morpheus Co., Seoul, Korea). Methods: The sample comprised 30 subjects aged 24.34 years (mean $29.0{\pm}2.5$ years). To test the correlation between direct and 3D image measurements, 21 landmarks were labeled on the face of each subject. Sixteen direct measurements were obtained twice using digital calipers; the same measurements were then made on two sets of 3D facial images. The mean values of measurements obtained from both methods were compared. To investigate the precision, a comparison was made between two sets of measurements taken with each method. Results: When comparing the variables from both methods, five of the 16 possible anthropometric variables were found to be significantly different. However, in 12 of the 16 cases, the mean difference was under 1 mm. The average value of the differences for all variables was 0.75 mm. Precision was high in both methods, with error magnitudes under 0.5 mm. Conclusions: 3D scanning images have high levels of precision and fairly good congruence with traditional anthropometry methods, with mean differences of less than 1 mm. 3D surface imaging using the Morpheus 3D$^{(R)}$ scanner is therefore a clinically acceptable method of recording facial integumental data.

Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography

  • Yousefi, Faezeh;Shokri, Abbas;Farhadian, Maryam;Vafaei, Fariborz;Forutan, Fereshte
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose: This study aimed to compare the accuracy of 3-dimensional(3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods: Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results: The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion: The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.

Evaluation of Renal Pathophysiological Processes Induced by an Iodinated Contrast Agent in a Diabetic Rabbit Model Using Intravoxel Incoherent Motion and Blood Oxygenation Level-Dependent Magnetic Resonance Imaging

  • Yongfang Wang;Xin Zhang;Bin Wang;Yang Xie;Yi Wang;Xuan Jiang;Rongjia Wang;Ke Ren
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.830-843
    • /
    • 2019
  • Objective: To examine the potential of intravoxel incoherent motion (IVIM) and blood oxygen level-dependent (BOLD) magnetic resonance imaging for detecting renal changes after iodinated contrast-induced acute kidney injury (CI-AKI) development in a diabetic rabbit model. Materials and Methods: Sixty-two rabbits were randomized into 2 groups: diabetic rabbits with the contrast agent (DCA) and healthy rabbits with the contrast agent (NCA). In each group, 6 rabbits underwent IVIM and BOLD imaging at 1 hour, 1 day, 2 days, 3 days, and 4 days after an iohexol injection while 5 rabbits were selected to undergo blood and histological examinations at these specific time points. Iohexol was administrated at a dose of 2.5 g I/kg of body weight. Further, the apparent transverse relaxation rate (R2*), average pure molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) were calculated. Results: The D and f values of the renal cortex (CO) and outer medulla (OM) were significantly decreased compared to baseline values in the 2 groups 1 day after the iohexol injection (p < 0.05). A marked reduction in the D* values for both the CO and OM was also observed after 1 hour in each group (p < 0.05). In the OM, a persistent elevation of the R2* was detected for 4 days in the DCA group (p < 0.05). Histopathological changes were prominent, and the pathological features of CI-AKI aggravated in the DCA group until day 4. The D, f, and R2* values significantly correlated with the histological damage scores, hypoxia-inducible transcription factor-1α expression scores, and serum creatinine levels. Conclusion: A combination of IVIM and BOLD imaging may serve as a noninvasive method for detecting and monitoring CI-AKI in the early stages in the diabetic kidney.

Diagnostic efficacy of specialized MRI & clinical results of arthroscopic treatment in ankle soft tissue impingement syndrome (족근 관절 연부조직 충돌 증후군에서 MRI의 진단적 의의 및 관절경적 치료 결과)

  • Lee, Jin-Woo;Moon, Eun-Su;Kim, Sung-Jae;Hahn, Soo-Bong;Kang, Eung-Shick
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.2
    • /
    • pp.208-217
    • /
    • 2003
  • Introduction: Soft-tissue impingement syndrome is now increasingly recognized as a significant cause of the chronic ankle pain. As a method to detect soft-tissue ankle impingement, a characteristic history and physical examination, routine MR imaging, and direct MR arthrography were used. The efficacy of routine MR imaging has been controversial for usefulness because of low sensitivity and specificity. Direct MR artrhography was recommaned for diagnosis because of the highest sensitivity, specificity and accuracy, but it requires an invasive procedure. The purpose of this study is to investigate the diagnostic accuracy of Fat suppressed, contrast enhanced, three-dimensional fast gradient recalled acquisition in the steady state with rediofrequency spoiling magnetic resonance imaging(CE 3D-FSPGR MRI) and to evaluate the clinical outcome of the arthroscopic treatment in assessing soft-tissue impingement associated with trauma of the ankle. Materials and Methods: We reviewed 38 patients who had arthroscopic evaluations and preoperative magnetic resonance imaging studies(3D-FSPGR MRI) for post-traumatic chronic ankle pain between January 2000 and August 2002. Among them, 24 patients had osteochondral lesion, lateral instability, loose body, malunion of lateral malleoli, and peroneal tendon dislocation. The patient group consisted of 23 men and 15 women with the average age of 34 years(16-81 years). The mean time interval from the initial trauma to the operation was 15.5 months(3 to 40 months), The mean follow-up duration of the assessment was 15.6months(12-48 months). MRI was simultaneously reviewed by two radiologists blinded to the clinical diagnosis. The sensitivity, specificity and accuracy of MRI was obtained from radiologic and arthroscopic finding. Arthroscopic debridement and additional operation for associated disease were performed. We used a standard protocol to evaluate patients before the operation and at follow-up which includes American Orthopedic Foot and Ankle Society Ankle-Hindfoot Score. Results: For the assessment of the synovitis and soft tissue impingement, fat suppressed CE 3D-FSPGR MR imaging had the sensitivity of 91.9%, the specificity of 84.4 and the accuracy of 87.5%. AOFAS Ankle-Hindfoot Score of preoperative state was 69.2, and the mean score of the last follow-up was 89.1. These were assessed as having 50% excellent(90-100) and 50% good(75-89). The presence of other associated disease didn't show the statistically significant difference(>0.05). Conclusion: Fat suppressed CE 3D-FSPGR MR imaging is useful method comparable to MR arthrography for diagnosis of synovitis or soft-tissue impingement, and arthroscopic debridement results in good clinical outcome.

  • PDF

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

Coherence Gated Three-dimensional Imaging System using Organic Photorefractive Holography

  • Hwang, Ui-Jung;Choi, Jongwan;Kim, Chuntae;Kim, Won-Guen;Oh, Jin-Woo;Kim, Nakjoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.938-940
    • /
    • 2014
  • This paper discusses a coherence-gated three-dimensional imaging system based on photorefractive holography, which was applied to imaging through turbid media with a view to developing biomedical instrumentation. A rapid response photorefractive device doped with 2,4,7-trinitro-9-fluorenylidene malononitrile was used to generate the hologram grating. The estimated depth resolution was $20{\mu}m$, which corresponds to the coherence length of the light source. In this coherence imaging system, tomographic imaging of a 3-dimensional object composed of a $50{\mu}m$ thick cylindrical layer was achieved. The proposed coherence imaging system using an organic photorefractive material can be used as an optical tomography system for biological applications.