• Title/Summary/Keyword: 2D Imaging

Search Result 1,158, Processing Time 0.03 seconds

Development of the 3D Imaging System and Automatic Registration Algorithm for the Intelligent Excavation System (IES) (지능형 굴삭 시스템을 위한 모바일 3D 이미징 시스템 및 자동 정합 알고리즘의 개발)

  • Chae, Myung-Jin;Lee, Gyu-Won;Kim, Jung-Ryul;Park, Jae-Woo;Yoo, Hyun-Seok;Cho, Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.136-145
    • /
    • 2009
  • The objective of the Intelligent Excavation System (IES) is to recognize the work environment and produce work plan and automatically control the excavator through integrating sensor and robot technologies. This paper discusses one of the core technologies of IES development project, development of 3D work environment modeling. 3D laser scanner is used for 3-dimensional mathematical model that can be visualized in virtual space in 3D. This paper describes (1) how the most appropriate 3D imaging system has been chosen; (2) the development of user interface and customization of the s/w to control the scanner for IES project; (3) the development of the mobile station for the scanner; (4) and the algorithm for the automatic registration of laser scan segments for IES project. The development system has been tested on the construction field and lessons learned and future development requirements are suggested.

Photoluminescence Imaging of SiO2@ Y2O3:Eu(III) and SiO2@ Y2O3:Tb(III) Core-Shell Nanostructures

  • Cho, Insu;Kang, Jun-Gill;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.575-580
    • /
    • 2014
  • We uniformly coated Eu(III)- and Tb(III)-doped yttrium oxide onto the surface of $SiO_2$ spheres and then characterized them by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction crystallography and UV-Visible absorption. 2D and 3D photoluminescence image map profiles were reported for the core-shell type structure. Red emission peaks of Eu(III) were observed between 580 to 730 nm and assigned to $^5D_0{\rightarrow}^7F_J$ (J = 0 - 4) transitions. The green emission peaks of Tb(III) between 450 and 650 nm were attributed to the $^5D_4{\rightarrow}^7F_J$ (J = 6, 5, 4, 3) transitions. For annealed samples, Eu(III) ions were embedded at a $C_2$ symmetry site in $Y_2O_3$, which was accompanied by an increase in luminescence intensity and redness, while Tb(III) was changed to Tb(IV), which resulted in no green emission.

Vision based 2D Human Body Motion Extraction (컴퓨터비젼을 이용한 사람의 2차원 움직임 정보 추출)

  • Lee, S-Hwan;Ahn, Sang-Chul;Kim, Ig-Jae;Kim, Hyoung-Gon;Kim, Jai-Hie
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.179-182
    • /
    • 2000
  • 본 논문은 특별한 마커를 사용하지 않고 연속되는 영상들에서 사람의 2 차원 움직임 정보를 추출하는 알고리즘을 제안한다. 사람의 움직임 정보를 추출하기 위해 색상, 움직임, 그리고 윤곽선 정보를 이용한다. 뿐만 아니라 사용자의 신체적인 차이와 특징점의 일관성을 위해 사람 몸통 모델을 사용한다. 본 논문의 알고리즘은 마커를 사용할 수 없는 HCI 응용분야에 될 수 있다.

  • PDF

The Effect of Left Subclavian Artery Coverage During Endovascular Repair of the Thoracic Aortic Aneurysm on Cerebral Hemodynamics: Two Cases of Flow Measurement by using 2D Phase Contrast Magnetic Resonance Imaging (흉부대동맥류의 혈관내치료 도중 좌측 쇄골하동맥 폐색이 뇌혈류역동에 미치는 효과: 2차원 위상차 대조 자기공명영상을 이용한 혈류 측정 2례 보고)

  • Baek, Seung-Hoon;Youn, Sung-Won;Kim, Ho-Kyun;Kwon, Oh-Choon;Lee, Sub;Lee, Jong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.159-168
    • /
    • 2012
  • The proximity of thoracic aortic aneurysm to the left subclavian artery (LSA) has made the coverage of LSA during thoracic endovascular aortic repair (TEVAR) be essential. Despite controversy concerning the safety of LSA coverage and the indications for LSA revascularizations, the cerebral hemodynamic change after LSA coverage has not been demonstrated. We prospectively examined two patients who would undergo TEVAR with LSA coverage by using 2D cine phase contrast MR imaging. After LSA coverage, the left subclavian steal was properly compensated by the increased flow volumes of both carotid arteries and right vertebral artery, which is the major collateral supply. The total brain supply after TEVAR did not lessen, which showed good correlation with uneventful clinical outcome. Therefore, 2D phase contrast MR imaging can be recommended as a useful technique to evaluate the hemodynamic change of the LSA coverage during TEVAR and to triage the candidate for LSA revascularization.

Diagnostic assessment of two-dimensional shear wave elastography in relation to dimethyl arginine levels in dogs with chronic kidney disease

  • Hyun Cho ;Seungwha Yang;Gukhyun Suh;Jihye Choi
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.75.1-75.8
    • /
    • 2023
  • Background: In veterinary medicine, previous studies regarding the diagnostic performance of shear wave elastography (SWE) in chronic kidney disease (CKD) are not consistent with each other. Moreover, there has been no study evaluating the relationship between symmetric dimethylarginine (SDMA) concentration and renal shear wave velocity (SWV) using two-dimensional SWE (2D SWE) in dogs with CKD. Objectives: This study aimed to evaluate the diagnostic capability of 2D SWE in dogs with CKD and to assess the relationship between renal SWV and SDMA concentration. Methods: Dogs with healthy kidneys and dogs with CKD underwent 2D SWE and SDMA assay. Renal stiffness was estimated as renal SWV in m/s. Results: SDMA concentration had a weak positive correlation with the left (r = 0.338, p = 0.022) and right renal SWV (r = 0.337, p = 0.044). Renal SWV was not significantly different between healthy kidney and CKD groups in the left (p = 0.085) and right (p = 0.171) kidneys. Conclusions: 2D SWE may could not distinguish between dogs with healthy kidney and dogs with early stage of CKD, but it would be useful for assessing the serial change of renal function in dogs.

Molecular Nuclear Cardiac Imaging (심장핵의학 분자영상학)

  • Lee, Dong-Soo;Paeng, Jin-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.175-179
    • /
    • 2004
  • Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needic injection with or without catheter guidance. Tk expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

Automatic Generation of 3D Face Model from Trinocular Images (Trinocular 영상을 이용한 3D 얼굴 모델 자동 생성)

  • Yi, Kwang-Do;Ahn, Sang-Chul;Kwon, Yong-Moo;Ko, Han-Seok;Kim, Hyoung-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.104-115
    • /
    • 1999
  • This paper proposes an efficient method for 3D modeling of a human face from trinocular images by reconstructing face surface using range data. By using a trinocular camera system, we mitigated the tradeoff between the occlusion problem and the range resolution limitation which is the critical limitation in binocular camera system. We also propose an MPC_MBS (Matching Pixel Count Multiple Baseline Stereo) area-based matching method to reduce boundary overreach phenomenon and to improve both of accuracy and precision in matching. In this method, the computing time can be reduced significantly by removing the redundancies. In the model generation sub-pixel accurate surface data are achieved by 2D interpolation of disparity values, and are sampled to make regular triangular meshes. The data size of the triangular mesh model can be controlled by merging the vertices that lie on the same plane within user defined error threshold.

  • PDF

A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System (POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교)

  • Jae Kwon Eem
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

3-D seismic data processing system for underground investigation (지하 구조 영상화를 위한 3차원 탄성파 자료처리시스템 개발)

  • Sheen, Dong-Hoon;Ji, Jun;Lee, Doo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.585-592
    • /
    • 2000
  • Primary purpose of the system developed in this study is 3-D seismic data processing system for subsurface structure imaging and this system is developed in PC based on Linux for lower-cost computer. Basic data processing modules are originated from SU (Seismic Unix) which is widely used in 2-D seismic data processing and auxilious modules are developed for 3-D data processing. The system which is constructed by using these data processing modules is designed to GUI (Graphic User Interface) in order that one can easily control and for this purpose, GTK (Gimp Tool KiT) conventionally adapted in producing Linux application.

  • PDF

Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity

  • Block, Kai Tobias;Chandarana, Hersh;Milla, Sarah;Bruno, Mary;Mulholland, Tom;Fatterpekar, Girish;Hagiwara, Mari;Grimm, Robert;Geppert, Christian;Kiefer, Berthold;Sodickson, Daniel K.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.87-106
    • /
    • 2014
  • Purpose : To describe how a robust implementation of a radial 3D gradient-echo sequence with stack-of-stars sampling can be achieved, to review the imaging properties of radial acquisitions, and to share the experience from more than 5000 clinical patient scans. Materials and Methods: A radial stack-of-stars sequence was implemented and installed on 9 clinical MR systems operating at 1.5 and 3 Tesla. Protocols were designed for various applications in which motion artifacts frequently pose a problem with conventional Cartesian techniques. Radial scans were added to routine examinations without selection of specific patient cohorts. Results: Radial acquisitions show significantly lower sensitivity to motion and allow examinations during free breathing. Elimination of breath-holding reduces failure rates for non-compliant patients and enables imaging at higher resolution. Residual artifacts appear as streaks, which are easy to identify and rarely obscure diagnostic information. The improved robustness comes at the expense of longer scan durations, the requirement for fat suppression, and the nonexistence of a time-to-center value. Care needs to be taken during the configuration of receive coils. Conclusion: Routine clinical use of radial stack-of-stars sequences is feasible with current MR systems and may serve as substitute for conventional fat-suppressed T1-weighted protocols in applications where motion is likely to degrade the image quality.