• Title/Summary/Keyword: 2D Convolutional Neural Network

Search Result 99, Processing Time 0.022 seconds

Emotion Recognition using Short-Term Multi-Physiological Signals

  • Kang, Tae-Koo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.1076-1094
    • /
    • 2022
  • Technology for emotion recognition is an essential part of human personality analysis. To define human personality characteristics, the existing method used the survey method. However, there are many cases where communication cannot make without considering emotions. Hence, emotional recognition technology is an essential element for communication but has also been adopted in many other fields. A person's emotions are revealed in various ways, typically including facial, speech, and biometric responses. Therefore, various methods can recognize emotions, e.g., images, voice signals, and physiological signals. Physiological signals are measured with biological sensors and analyzed to identify emotions. This study employed two sensor types. First, the existing method, the binary arousal-valence method, was subdivided into four levels to classify emotions in more detail. Then, based on the current techniques classified as High/Low, the model was further subdivided into multi-levels. Finally, signal characteristics were extracted using a 1-D Convolution Neural Network (CNN) and classified sixteen feelings. Although CNN was used to learn images in 2D, sensor data in 1D was used as the input in this paper. Finally, the proposed emotional recognition system was evaluated by measuring actual sensors.

3D Human Reconstruction from Video using Quantile Regression (분위 회귀 분석을 이용한 비디오로부터의 3차원 인체 복원)

  • Han, Jisoo;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.264-272
    • /
    • 2019
  • In this paper, we propose a 3D human body reconstruction and refinement method from the frames extracted from a video to obtain natural and smooth motion in temporal domain. Individual frames extracted from the video are fed into convolutional neural network to estimate the location of the joint and the silhouette of the human body. This is done by projecting the parameter-based 3D deformable model to 2D image and by estimating the value of the optimal parameters. If the reconstruction process for each frame is performed independently, temporal consistency of human pose and shape cannot be guaranteed, yielding an inaccurate result. To alleviate this problem, the proposed method analyzes and interpolates the principal component parameters of the 3D morphable model reconstructed from each individual frame. Experimental result shows that the erroneous frames are corrected and refined by utilizing the relation between the previous and the next frames to obtain the improved 3D human reconstruction result.

Indirect Inspection Signal Diagnosis of Buried Pipe Coating Flaws Using Deep Learning Algorithm (딥러닝 알고리즘을 이용한 매설 배관 피복 결함의 간접 검사 신호 진단에 관한 연구)

  • Sang Jin Cho;Young-Jin Oh;Soo Young Shin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.

One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network

  • Basher, Abol;Ahmed, Samsuddin;Jung, Ho Yub
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.22-32
    • /
    • 2020
  • The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.

CNN Architecture for Accurately and Efficiently Learning a 3D Triangular Mesh (3차원 삼각형 메쉬를 정확하고 효율적으로 학습하기 위한 CNN 아키텍처)

  • Hong Eun Na;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.369-372
    • /
    • 2023
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolution Neural Network, CNN)을 응용하여 정확도가 높은 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 폴리곤의 edge와 face의 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 1, 2차원 데이터 형태인 오디오 파일과 이미지였다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 딥러닝은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장의 확대로 인해 3차원 모델링 시장이 증가하고, 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습에 이용하는 방식으로 적용하는 것은 쉽지 않다. 그렇게 때문에 본 논문에서는 산업 현장에서 이용되는 데이터인 메쉬 구조를 폴리곤의 최소 단위인 삼각형 형태로 구성하여 학습 데이터를 구성해 기존의 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

2D Emotion Classification using Short-Time Fourier Transform of Pupil Size Variation Signals and Convolutional Neural Network (동공크기 변화신호의 STFT와 CNN을 이용한 2차원 감성분류)

  • Lee, Hee-Jae;Lee, David;Lee, Sang-Goog
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1646-1654
    • /
    • 2017
  • Pupil size variation can not be controlled intentionally by the user and includes various features such as the blinking frequency and the duration of a blink, so it is suitable for understanding the user's emotional state. In addition, an ocular feature based emotion classification method should be studied for virtual and augmented reality, which is expected to be applied to various fields. In this paper, we propose a novel emotion classification based on CNN with pupil size variation signals which include not only various ocular feature information but also time information. As a result, compared to previous studies using the same database, the proposed method showed improved results of 5.99% and 12.98% respectively from arousal and valence emotion classification.

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.

Super-resolution based on multi-channel input convolutional residual neural network (다중 채널 입력 Convolution residual neural networks 기반의 초해상화 기법)

  • Youm, Gwang-Young;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.37-39
    • /
    • 2016
  • 최근 Convolutional neural networks(CNN) 기반의 초해상화 기법인 Super-Resolution Convolutional Neural Networks (SRCNN) 이 좋은 PSNR 성능을 발휘하는 것으로 보고되었다 [1]. 하지만 많은 제안 방법들이 고주파 성분을 복원하는데 한계를 드러내는 것처럼, SRCNN 도 고주파 성분 복원에 한계점을 지니고 있다. 또한 SRCNN 의 네트워크 층을 깊게 만들면 좋은 PSNR 성능을 발휘하는 것으로 널리 알려져 있지만, 네트워크의 층을 깊게 하는 것은 네트워크 파라미터 학습을 어렵게 하는 경향이 있다. 네트워크의 층을 깊게 할 경우, gradient 값이 아래(역방향) 층으로 갈수록 발산하거나 0 으로 수렴하여, 네트워크 파라미터 학습이 제대로 되지 않는 현상이 발생하기 때문이다. 따라서 본 논문에서는 네트워크 층을 깊게 하는 대신에, 입력을 다중 채널로 구성하여, 네트워크에 고주파 성분에 관한 추가적인 정보를 주는 방법을 제안하였다. 많은 초해상화 기법들이 고주파 성분의 복원 능력이 부족하다는 점에 착안하여, 우리는 네트워크가 고주파 성분에 관한 많은 정보를 필요로 한다는 것을 가정하였다. 따라서 우리는 네트워크의 입력을 고주파 성분이 여러 가지 강도로 입력되도록 저해상도 입력 영상들을 구성하였다. 또한 잔차신호 네트워크(residual networks)를 도입하여, 네트워크 파라미터를 학습할 때 고주파 성분의 복원에 집중할 수 있도록 하였다. 본 논문의 효율성을 검증하기 위하여 set5 데이터와 set14 데이터에 관하여 실험을 진행하였고, SRCNN 과 비교하여 set5 데이터에서는 2, 3, 4 배에 관하여 각각 평균 0.29, 0.35, 0.17dB 의 PSNR 성능 향상이 있었으며, set14 데이터에서는 3 배의 관하여 평균 0.20dB 의 PSNR 성능 향상이 있었다.

  • PDF

Estimation of Manhattan Coordinate System using Convolutional Neural Network (합성곱 신경망 기반 맨하탄 좌표계 추정)

  • Lee, Jinwoo;Lee, Hyunjoon;Kim, Junho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • In this paper, we propose a system which estimates Manhattan coordinate systems for urban scene images using a convolutional neural network (CNN). Estimating the Manhattan coordinate system from an image under the Manhattan world assumption is the basis for solving computer graphics and vision problems such as image adjustment and 3D scene reconstruction. We construct a CNN that estimates Manhattan coordinate systems based on GoogLeNet [1]. To train the CNN, we collect about 155,000 images under the Manhattan world assumption by using the Google Street View APIs and calculate Manhattan coordinate systems using existing calibration methods to generate dataset. In contrast to PoseNet [2] that trains per-scene CNNs, our method learns from images under the Manhattan world assumption and thus estimates Manhattan coordinate systems for new images that have not been learned. Experimental results show that our method estimates Manhattan coordinate systems with the median error of $3.157^{\circ}$ for the Google Street View images of non-trained scenes, as test set. In addition, compared to an existing calibration method [3], the proposed method shows lower intermediate errors for the test set.

CNN Based 2D and 2.5D Face Recognition For Home Security System (홈보안 시스템을 위한 CNN 기반 2D와 2.5D 얼굴 인식)

  • MaYing, MaYing;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1207-1214
    • /
    • 2019
  • Technologies of the 4th industrial revolution have been unknowingly seeping into our lives. Many IoT based home security systems are using the convolutional neural network(CNN) as good biometrics to recognize a face and protect home and family from intruders since CNN has demonstrated its excellent ability in image recognition. In this paper, three layouts of CNN for 2D and 2.5D image of small dataset with various input image size and filter size are explored. The simulation results show that the layout of CNN with 50*50 input size of 2.5D image, 2 convolution and max pooling layer, and 3*3 filter size for small dataset of 2.5D image is optimal for a home security system with recognition accuracy of 0.966. In addition, the longest CPU time consumption for one input image is 0.057S. The proposed layout of CNN for a face recognition is suitable to control the actuators in the home security system because a home security system requires good face recognition and short recognition time.