• Title/Summary/Keyword: 2D ComputerGraphics

Search Result 253, Processing Time 0.024 seconds

An XML Database System for 3-Dimensional Graphic Images (3차원 그래픽 이미지를 위한 XML 데이타베이스 시스템)

  • Hwang, Jong-Ha;Hwang, Su-Chan
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.110-118
    • /
    • 2002
  • This paper presents a 3-D graphic database system based on XML that supports content-based retrievals of 3-D images, Most of graphics application systems are currently centered around the processing of 2-D images and research works on 3-D graphics are mainly concerned about the visualization aspects of 3-D image. They do not support the semantic modeling of 3-D objects and their spatial relations. In our data model, 3-D images are represented as compositions of 3-D graphic objects with associated spatial relations. Complex 3-D objects are mode]ed using a set of primitive 3-D objects rather than the lines and polygons that are found in traditional graphic systems. This model supports content-based retrievals of scenes containing a particular object or those satisfying certain spatial relations among the objects contained in them. 3-D images are stored in the database as XML documents using 3DGML DTD that are developed for modeling 3-D graphic data. Finally, this paper describes some examples of query executed in our Web-based prototype database system.

High-Speed SD-OCT for Ultra Wide-field Human Retinal Three Dimensions Imaging using GPU (병렬처리 그래픽 기술 기반의 Spectral Domain-Optical Coherence Tomography를 이용한 3차원 광 대역 망막 촬영)

  • Park, Kibeom;Cho, Nam Hyun;Wijesinghe, Ruchire Eranga Henry;Kim, Jeehyun
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • We have developed an ultra wide-field of view Optical Coherence Tomography(OCT) which has capability to 2D and 3D views of cross-sectional structure of in vivo human retina. Conventional OCT has a limitation in visualizing the entire retina due to a reduced field of view. We designed an optical setup to significantly improve the lateral scanning range to be more than 20 mm. The entire human retinal structure in 2D and 3D was reported in this paper with the developed OCT system. Also, we empirically searched an optimized image size for real time visualization by analyzing variation of the frame rate with different lateral scan points. The size was concluded to be $1024{\times}2000{\times}300$ pixels which took 9 seconds for visualization.

Hardware Implementation of Rasterizer with SIMD Architecture Applicable to Mobile 3D Graphics System (모바일 3차원 그래픽스 시스템에 적용 가능한 SIMD 구조를 갖는 래스터라이저의 하드웨어 구현)

  • Ha, Chang-Soo;Sung, Kwang-Ju;Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.313-315
    • /
    • 2010
  • In this paper, we describe research results of developing hardware rasterizer that is applicable to mobile 3D graphics system, designed in SIMD architecture and verified in FPGA. Tile-based scan conversion unit is designed like SIMD architecture running four tiles simultaneously and each tile traverses pixels hierarchical in 3-level so that visiting counts is minimized. As experimental results, $8{\times}8$ is the most efficient size of tile and the last step of tile traversing is performed on $2{\times}2$ sized subtile. The rasterizer supports flat shading and gouraud shading and texture mapper supports affine mapping and perspective corrected mapping. Also, texture mapper supports point sampling mode and bilinear interpolating sampling mode and two types of wrapping modes and various blending modes. The rasterzer operates as 120Mhz on xilinx vertex4 $l{\times}100$ device. To easy verification, texture memory and frame buffer are generated as block rom and block ram.

  • PDF

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

  • Madusanka, Nuwan;Zaben, Naim Al;Shidaifat, Alaaddin Al;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • In this paper, we proposed new software for 3D rendering of MR images in the medical domain using C# wrapper of Visualization Toolkit (VTK) and Microsoft .NET framework. Our objective in developing this software was to provide medical image segmentation, 3D rendering and visualization of hippocampus for diagnosis of Alzheimer disease patients using DICOM Images. Such three dimensional visualization can play an important role in the diagnosis of Alzheimer disease. Segmented images can be used to reconstruct the 3D volume of the hippocampus, and it can be used for the feature extraction, measure the surface area and volume of hippocampus to assist the diagnosis process. This software has been designed with interactive user interfaces and graphic kernels based on Microsoft.NET framework to get benefited from C# programming techniques, in particular to design pattern and rapid application development nature, a preliminary interactive window is functioning by invoking C#, and the kernel of VTK is simultaneously embedded in to the window, where the graphics resources are then allocated. Representation of visualization is through an interactive window so that the data could be rendered according to user's preference.

A Computer Graphics Program for 2-Dimensional Strut-tie Model Design of Concrete Members (콘크리트 구조부재의 2차원 스트럿-타이 모델 설계를 위한 컴퓨터 그래픽 프로그램)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.531-539
    • /
    • 2017
  • The strut-tie model approach has been recognized as an efficient methodology for the design of all types of concrete members with D-regions, and the approach has been accepted in design codes globally. However, the design of concrete members with the approach requires many iterative numerical structural analyses, numerous graphical calculations, enormous times and efforts, and designer's subjective decisions in terms of the development of appropriate strut-tie model, determination of required areas of struts and ties, and verification of strength conditions of struts and nodal zones. In this study, a computer graphics program, that enables the design of concrete members efficiently and professionally by overcoming the forementioned limitations of the strut-tie model approach, is developed. In the computer graphics program, the numerical programs that are essential in the strut-tie model analysis and design of concrete members including finite element analysis programs for the plane truss and solid problems with all kinds of boundary conditions, a program for automatic determination of effective strengths of struts and nodal zones, and a program for graphical verification of developed strut-tie model's appropriateness by displaying various geometrical shapes of struts and nodal zones, are loaded. Great efficiency and convenience during the application of the strut-tie model approach may be provided by the various graphics environment-based functions of the proposed program.

Creating Stick Figure Animations Based on Captured Motion Data (모션 캡쳐 데이터에 기초한 스틱 피규어애니메이션 제작)

  • Choi, Myung Geol;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • We present a method for creating realistic 2D stick figure animations easily and rapidly using captured motion data. Stick figure animations are typically created by drawing a single pose for each frame manually for the entire time interval. In contrast, our method allows the user to summarize an action (e.g. kick, jump) for an extended period of time into a single image in which one or more action lines are drawn over a stick figure to represent the moving directions of body parts. In order to synthesize a series of time-varying poses automatically from the given image, our system first builds a deformable character model that can make arbitrary deformations of the user's stick figure drawing in 2D plane. Then, the system searches for an optimal motion segment that best fits the given pose and action lines from pre-recorded motion database. Deforming the character model to imitate the retrieved motion segment produces the final stick figure animation. We demonstrate the usefulness of our method in creating interesting stick figure animations with little effort through experiments using a variety of stick figure styles and captured motion data.

Survey on Mixed Reality R&D (혼합현실 기술 연구개발 동향 및 전망)

  • Lee, Sang-Goog
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.2
    • /
    • pp.1-15
    • /
    • 2007
  • In this paper, we review relevant technologies of MR (Mixed Reality) and show important components of perspective that can overcome technical limitations of the current MR. An MR technology combines real and virtual objects in a real environment, and runs interactive in real time, and is regarded as an emerging technology in a large part of the future of IT (Information Technology). We've grouped the major obstacles limiting the wider use of MR technologies into three themes: technological limitations (i,e., tracking, rendering, authoring, and registration), user interface limitations(i.e. UI metaphor for MR interaction), and social acceptance Issues.

  • PDF

VISUALIZATION OF 3D DATA PRESERVING CONVEXITY

  • Hussain Malik Zawwar;Hussain Maria
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.397-410
    • /
    • 2007
  • Visualization of 2D and 3D data, which arises from some scientific phenomena, physical model or mathematical formula, in the form of curve or surface view is one of the important topics in Computer Graphics. The problem gets critically important when data possesses some inherent shape feature. For example, it may have positive feature in one instance and monotone in the other. This paper is concerned with the solution of similar problems when data has convex shape and its visualization is required to have similar inherent features to that of data. A rational cubic function [5] has been used for the review of visualization of 2D data. After that it has been generalized for the visualization of 3D data. Moreover, simple sufficient constraints are made on the free parameters in the description of rational bicubic functions to visualize the 3D convex data in the view of convex surfaces.

Improved shape-based interpolation for three-dimensional reconstruction in gray-scale images (3차원 그레이-스케일 영상 재구성을 위한 개선된 형태-기반 보간)

  • Kim Hong, Helen;Park, Joo-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Using a series of medical tomograms, we can reconstruct internal organs or other objects of interest and generate 3-D images. It is generally accepted that the axial resolution determined by two sequential image slices is lower than the planar resolution in one image slices. Therefore, various methods of interpolation were developed for an accurate display of reconstructed images. In this paper, a new algorithm for 3-D reconstruction of the medical images such as MRI and X-ray CT is suggested. The algorithm is shape-based and utilizes parts of the gray-level information. We extend the conventional shape-based interpolation of the binary images to the gray-scale images using the shortest distance map. Using this new algorithm, We could reduce the execution time for interpolation while keeping similar high quality of the reconstructed images with reduced execution time and is applicable to the various medical tomograms.

  • PDF

Refinement of Projection Map Based on Artificial Neural Networks to Represent Noise-Reduced Foam Effects (노이즈가 완화된 거품 효과를 표현하기 위한 인공신경망 기반의 투영맵 정제)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.4
    • /
    • pp.11-24
    • /
    • 2021
  • In this paper, we propose an artificial neural network framework that can represent the foam effects expressed in liquid simulation in detail without noise. The position and advection of foam particles are calculated using the existing screen projection method, and the noise problem that appears in this process is solved through an proposed artificial neural network. The important thing in the screen projection approach is the projection map, but noise occurs in the projection map in the process of projecting momentum into the discretized screen space, and we efficiently solve this problem by using an artificial neural network-based denoising network. When the foam generating area is selected through the projection map, 2D is inversely transformed into 3D space to generate foam particles. We solve the existing denoising network problem in which small-scaled foam particles disappear. In addition, by integrating the proposed algorithm with the screen-space projection framework, all the advantages of this approach can be accommodated. As a result, it shows through various experiments whether it is possible to stably represent not only the clean foam effects but also the foam particles lost due to the denoising process.