• Title/Summary/Keyword: 2D 합성 곱 신경망

Search Result 40, Processing Time 0.021 seconds

합성곱 신경망을 이용한 딥러닝 기반의 프레임 동기 기법 (Deep Learning based Frame Synchronization Using Convolutional Neural Network)

  • 이의수;정의림
    • 한국정보통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.501-507
    • /
    • 2020
  • 본 논문에서는 합성곱 신경망(CNN)에 기반한 프레임 동기 기법을 제안한다. 기존의 프레임 동기 기법은 프리앰블과 수신 신호 사이의 상관을 통해 수신 신호와 프리앰블이 일치하는 지점을 찾는다. 제안하는 기법은 1차원 벡터로 이루어진 상관기 출력 신호를 2차원 행렬로 재구성하며, 이 2차원 행렬을 합성곱 신경망에 입력하고 합성곱 신경망은 프레임 도착 지점을 추정한다. 구체적으로 가산 백색 가우스 잡음(AWGN) 환경에서 무작위로 도착하는 수신 신호를 생성하여 학습 데이터를 만들고, 이 학습 데이터로 합성곱 신경망을 학습시킨다. 컴퓨터 모의실험을 통해 기존의 동기 기법과 제안하는 기법의 프레임 동기 오류 확률을 다양한 신호 대 잡음 비(SNR)에서 비교한다. 모의실험 결과는 제안하는 합성곱 신경망을 이용한 프레임 동기 기법이 기존 기법 대비 약 2dB 우수함을 보인다.

UWB 시스템에서 합성곱 신경망을 이용한 거리 추정 (Distance Estimation Using Convolutional Neural Network in UWB Systems)

  • 남경모;정태윤;정성훈;정의림
    • 한국정보통신학회논문지
    • /
    • 제23권10호
    • /
    • pp.1290-1297
    • /
    • 2019
  • 본 논문에서는 ultra-wideband(UWB) 시스템에서 합성곱 신경망(CNN)을 이용한 거리 추정 기법을 제안한다. 제안하는 기법은 UWB 신호를 이용하여 송신기와 수신기 사이의 거리를 추정하기 위하여 수신신호의 크기 샘플로 이루어진 1차원 벡터를 2차원 행렬로 재구성하며, 이 2차원 행렬로부터 합성곱 신경망 회귀를 이용하여 거리를 추정한다. IEEE 802.15.4a 표준의 UWB 실내 가시선 채널모델을 이용하여 수신신호를 생성하여 학습데이터를 만들며 합성곱 신경망 모델을 학습시킨다. 또한 실제 필드 시험을 통해 실내환경에서의 실험 데이터를 이용하여 거리추정 성능을 확인한다. 제안하는 기법은 기존의 문턱값 기반의 거리 추정 기법과의 성능비교도 수행하는데, 결과에 따르면 10m 거리에서 제안기법은 0.6m의 제곱근 평균 자승 에러를 보이는데 기존기법은 1.6m로 훨씬 큰 에러를 보인다.

스킵 연결 형태 기반의 손 관절 2D 및 3D 검출 기법 (2D and 3D Hand Pose Estimation Based on Skip Connection Form)

  • 구종회;김미경;차의영
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1574-1580
    • /
    • 2020
  • 기존의 신체 인식 방법은 특수한 기기를 사용하거나 이미지로부터 영상처리를 통해 검출하는 방법들이 있다. 특수 기기를 사용할 경우 기기를 사용할 수 있는 환경이 제약되고 기기의 비용이 많이 든다는 단점이 있다. 카메라와 영상처리를 사용할 경우 환경의 제약과 비용이 낮아지는 장점이 있지만, 성능이 떨어진다. 이런 단점을 해결하기 위해 카메라와 합성 곱 심층 신경망을 사용한 신체 인식 방법들이 연구되었다. 합성 곱 심층 신경망의 성능을 올리기 위해 다양한 기법들이 제안되었다. 본 논문에서는 합성 곱 심층 신경망의 성능을 올리기 위한 기법 중 스킵 연결을 다양한 형태로 사용하여 스킵 연결이 손 검출 망에 끼치는 영향을 실험하였다. 실험을 통해 기본 스킵 연결 이외 추가적인 스킵 연결의 존재가 성능에 나은 영향을 끼치고 하향 스킵 연결만 추가된 망이 가장 나은 성능을 보임을 확인하였다.

3차원 삼각형 메쉬를 정확하고 효율적으로 학습하기 위한 CNN 아키텍처 (CNN Architecture for Accurately and Efficiently Learning a 3D Triangular Mesh)

  • 나홍은;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.369-372
    • /
    • 2023
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolution Neural Network, CNN)을 응용하여 정확도가 높은 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 폴리곤의 edge와 face의 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 1, 2차원 데이터 형태인 오디오 파일과 이미지였다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 딥러닝은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장의 확대로 인해 3차원 모델링 시장이 증가하고, 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습에 이용하는 방식으로 적용하는 것은 쉽지 않다. 그렇게 때문에 본 논문에서는 산업 현장에서 이용되는 데이터인 메쉬 구조를 폴리곤의 최소 단위인 삼각형 형태로 구성하여 학습 데이터를 구성해 기존의 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

인지 무선 통신을 위한 합성곱 신경망 기반 스펙트럼 센싱 기법 (CNN Based Spectrum Sensing Technique for Cognitive Radio Communications)

  • 정태윤;이의수;김도경;오지명;노우영;정의림
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.276-284
    • /
    • 2020
  • 본 논문에서는 인지 무선 통신을 위한 새로운 합성곱 신경망 기반 스펙트럼 센싱 기법을 제안한다. 제안하는 기법은 주 사용자 신호에 대한 어떠한 사전 정보도 알지 못하는 상황에서 에너지 검출을 통해 주 사용자 신호 유무를 판단한다. 제안하는 기법은 센싱하고자 하는 전체 대역을 고려하여 수신신호를 고속으로 샘플링한다. 이후 신호의 FFT(fast Fourier transform)을 통해 주파수 스펙트럼으로 변환하고 연속적으로 이와 같은 스펙트럼을 쌓아서 2차원 신호를 만든다. 이렇게 만든 2차원 신호를 탐지하고자 하는 채널 대역폭 단위로 자르고 합성곱 신경망에 입력하여 채널이 사용 중인지 비어있는지 판단한다. 판단하고자 하는 분류의 종류가 두 가지이므로 이진 분류 합성곱 신경망을 사용한다. 제안하는 기법의 성능은 컴퓨터 모의실험과 실제 실내환경에서의 실험을 통해 검증하는데 이 결과에 따르면 제안하는 기법은 기존 문턱값 기반 기법보다 2 dB 이상 우수한 성능을 보인다.

합성곱 신경망 기반 맨하탄 좌표계 추정 (Estimation of Manhattan Coordinate System using Convolutional Neural Network)

  • 이진우;이현준;김준호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권3호
    • /
    • pp.31-38
    • /
    • 2017
  • 본 논문에서는 도심 영상에 대해 맨하탄 좌표계를 추정하는 합성곱 신경망(Convolutional Neural Network) 기반의 시스템을 제안한다. 도심 영상에서 맨하탄 좌표계를 추정하는 것은 영상 조정, 3차원 장면 복원 등 컴퓨터 그래픽스 및 비전 문제 해결의 기본이 된다. 제안하는 합성곱 신경망은 GoogLeNet[1]을 기반으로 구성한다. 합성곱 신경망을 훈련하기 위해 구글 스트리트 뷰 API로 영상을 수집하고 기존 캘리브레이션 방법으로 맨하탄 좌표계를 계산하여 데이터셋을 생성한다. 장면마다 새롭게 합성곱 신경망을 학습해야하는 PoseNet[2]과 달리, 본 논문에서 제안하는 시스템은 장면의 구조를 학습하여 맨하탄 좌표계를 추정하기 때문에 학습되지 않은 새로운 장면에 대해서도 맨하탄 좌표계를 추정한다. 제안하는 방법은 학습에 참여하지 않은 구글 스트리트 뷰 영상을 검증 데이터로 테스트하였을 때 $3.157^{\circ}$의 중간 오차로 맨하탄 좌표계를 추정하였다. 또한, 동일 검증 데이터에 대해 제안하는 방법이 기존 맨하탄 좌표계 추정 알고리즘[3]보다 더 낮은 중간 오차를 보이는 것을 확인하였다.

신제품 개발을 위한 GAN 기반 생성모델 성능 비교 (Performance Comparisons of GAN-Based Generative Models for New Product Development)

  • 이동훈;이세훈;강재모
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.867-871
    • /
    • 2022
  • 최근 빠른 유행의 변화 속에서 디자인의 변화는 패션기업의 매출에 큰 영향을 미치기 때문에 기업들은 신제품디자인 선택에 신중할 수밖에 없다. 최근 인공지능 분야의 발달에 따라 패션시장에서도 소비자들의 선호도를 높이기 위해 다양한 기계학습을 많이 활용하고 있다. 우리는 선호도와 같은 추상적인 개념을 수치화함으로써 신제품 개발에 신뢰성을 높이는 부분에 기여하고자 한다. 이를 위해 3가지 적대적 생성 신경망(Generative adversial netwrok, GAN)을 통하여 기존에 없는 새로운 이미지를 생성하고, 미리 훈련된 합성곱 신경망(Convolution neural networkm, CNN)을 이용하여 선호도라는 추상적인 개념을 수치화시켜 비교하였다. 심층 컨볼루션 적대적 생성 신경망(Deep convolutional generative adversial netwrok, DCGAN), 점진적 성장 적대적 생성 신경망(Progressive growing generative adversial netwrok, PGGAN), 이중 판별기 적대적 생성 신경망(Dual Discriminator generative adversial netwrok, D2GAN)의 3가지 방법을 통해 새로운 이미지를 생성하였고, 판매량이 높았던 제품으로 훈련된 합성곱 신경망으로 유사도를 비교, 측정하였다. 측정된 유사도의 정도를 선호도로 간주하였으며 실험 결과 D2GAN이 DCGAN, PGGAN에 비해 상대적으로 높은 유사도를 보여주었다.

인지 무선 통신을 위한 순환 신경망 기반 스펙트럼 센싱 기법 (Recurrent Neural Network Based Spectrum Sensing Technique for Cognitive Radio Communications)

  • 정태윤;정의림
    • 한국정보통신학회논문지
    • /
    • 제24권6호
    • /
    • pp.759-767
    • /
    • 2020
  • 본 논문에서는 인지 무선 통신을 위한 새로운 순환 신경망 기반 스펙트럼 센싱 기법을 제안한다. 제안하는 기법은 주사용자에 대한 정보가 전혀 없는 상황에서 에너지 검출을 통해 신호 존재 유무를 판단한다. 제안 기법은 센싱하고자 하는 전체 대역을 고려하여 수신신호를 고속으로 샘플링 후 이 신호의 FFT (fast Fourier transform)를 통해 주파수 스펙트럼으로 변환한다. 이 스펙트럼 신호는 채널 대역폭 단위로 자른 후 순환 신경망에 입력하여 해당 채널이 사용중인지 비어있는지 판정한다. 제안하는 기법의 성능은 컴퓨터 모의실험을 통해 확인하는데 그 결과에 따르면 기존 문턱값 기반 기법보다 2 [dB] 이상 우수하며 합성곱 신경망 기법과 유사한 성능을 보인다. 또한, 실제 실내환경에서 실험도 수행하는데 이 결과에 따르면 제안하는 기법이 기존 문턱값 기반 방식 및 합성곱 신경망 방식보다 4 [dB] 이상 우수한 성능을 보인다.

합성곱 신경망을 이용한 전기 아크 신호 검출 (Electrical Arc Detection using Convolutional Neural Network)

  • 이상익;강석우;김태원;김만배
    • 방송공학회논문지
    • /
    • 제25권4호
    • /
    • pp.569-575
    • /
    • 2020
  • 전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿 변환, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 변환 및 특징 추출은 부가적인 처리 시간이 요구되는 단점이 있다. 반면에 최근의 딥러닝 모델은 종단간 학습으로 특징 추출 과정없이 직접 원시 데이터를 활용한다. 따라서, 1-D 시간 신호를 직접 활용하여 아크를 검출하는 것이 좋은데, 인공신경망의 분류 성능이 저하되는 문제점이 있다. 본 논문에서는 연속 입력 1-D 신호를 2-D로 변환한 후에, 합성곱신경망으로 분류하는 방법을 제안한다. 실험 데이터에 적용한 결과 합성곱신경망의 사용이 인공신경망보다 약 8.6%의 아크 분류 성능을 향상시켰다. 또한 2-D 데이터의 부족을 보완하기 위해서 데이터증강을 이용하여, 14%의 분류 성능을 개선하였다.

시간 연속성을 고려한 딥러닝 기반 레이더 강우예측 (Radar rainfall prediction based on deep learning considering temporal consistency)

  • 신홍준;윤성심;최재민
    • 한국수자원학회논문집
    • /
    • 제54권5호
    • /
    • pp.301-309
    • /
    • 2021
  • 본 연구에서는 시계열 순서의 의미가 희석될 수 있는 기존의 U-net 기반 딥러닝 강우예측 모델의 성능을 개선하고자 하였다. 이를 위해서 데이터의 연속성을 고려한 ConvLSTM2D U-Net 신경망 구조를 갖는 모델을 적용하고, RainNet 모델 및 외삽 기반의 이류모델을 이용하여 예측정확도 개선 정도를 평가하였다. 또한 신경망 기반 모델 학습과정에서의 불확실성을 개선하기 위해 단일 모델뿐만 아니라 10개의 앙상블 모델로 학습을 수행하였다. 학습된 신경망 강우예측모델은 현재를 기준으로 과거 30분 전까지의 연속된 4개의 자료를 이용하여 10분 선행 예측자료를 생성하는데 최적화되었다. 최적화된 딥러닝 강우예측모델을 이용하여 강우예측을 수행한 결과, ConvLSTM2D U-Net을 사용하였을 때 예측 오차의 크기가 가장 작고, 강우 이동 위치를 상대적으로 정확히 구현하였다. 특히, 앙상블 ConvLSTM2D U-Net이 타 예측모델에 비해 높은 CSI와 낮은 MAE를 보이며, 상대적으로 정확하게 강우를 예측하였으며, 좁은 오차범위로 안정적인 예측성능을 보여주었다. 다만, 특정 지점만을 대상으로 한 예측성능은 전체 강우 영역에 대한 예측성능에 비해 낮게 나타나, 상세한 영역의 강우예측에 대한 딥러닝 강우예측모델의 한계도 확인하였다. 본 연구를 통해 시간의 변화를 고려하기 위한 ConvLSTM2D U-Net 신경망 구조가 예측정확도를 높일 수 있었으나, 여전히 강한 강우영역이나 상세한 강우예측에는 공간 평활로 인한 합성곱 신경망 모델의 한계가 있음을 확인하였다.