• Title/Summary/Keyword: 2D 스캐너

Search Result 166, Processing Time 0.033 seconds

3D analysis of soft tissue around implant after flap folding suture (Flap folding suture를 활용한 판막의 고정에 따른 임플란트 주변 연조직 3차원 부피 변화 관찰)

  • Jung, Sae-Young;Kang, Dae-Young;Shin, Hyun-Seung;Park, Jung-Chul
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.130-137
    • /
    • 2021
  • Purpose: The various suture techniques can be utilized in order to maximize the keratinized tissue healing around dental implants. The aim of this study is to compare the soft tissue healing pattern between two different suture techniques after implant placement. Materials and Methods: 15 patients with 18 implants were enrolled in this study. Simple implant placement without any additional bone graft was performed. Two different suture techniques were used to tug in the mobilized flap near the healing abutment after paramarginal flap design. Digital intraoral scan was performed at baseline, post-operation, stitch out, and 3 months after operation. The scan data were aligned using multiple points such as cusp, fossa of adjacent teeth, and/or healing abutment. After subtracting scan data at baseline with other time-point results, closed space indicating volume increment of peri-implant mucosa was selected. The volume of the close space was measured in mm3. The volume between two suture techniques at three time-points was compared using nonparametric rank-based analysis. Results: Healing was uneventful in both groups. Both suture technique groups showed increased soft tissue volume immediately after surgery. The amount of volume increment significantly decreased after 3 months (P < 0.001). Flap folding suture group showed higher median of volume increment than interrupted suture group after 3 months without any statistical significance (P > 0.05). Conclusion: After paramarginal flap reflection, the raised flaps stabilized by flap folding suture showed relatively higher volume maintenance after 3-month healing period. However, further studies are warranted.

Study on Applicability of Asymmetry V-Cut method in Underground Mine (비대칭 V-cut의 갱내 광산에 대한 적용성 연구)

  • Kim, Jung-Gyu;Jung, Seung-Won;Kim, Jun-Ha;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.520-533
    • /
    • 2021
  • It is necessary to increase the blasting efficiency in order to minimize the economic loss caused when the excavation cross section is reduced due to the stability problem of underground mining development, and for this, a new blasting design is proposed. In this study, the blasting efficiency of the general design in the field, the suggestion designI, which added two columns to production blasting, and the suggestion design II, which added one column to create asymmetry, is compared. Advance rate and fragmentation were selected as the evaluation index of the blasting efficiency. In the case of advance rate, compared to the normal, the suggestionI improved by 6.07% and the suggestionII improved by 4.65%. In the case of fragmentation, based on P80, compared to the normal, the suggestionI reduced about 58% and the suggestionII was about 47%. Accoording to the evaluation index, the suggestion designI shows better blasting efficiency than the suggestion designII. But considering the additional work time and cost required for the suggestion designI due to the insignificant difference in the evaluation index results, the asymmetry V-cut, the suggestion designII, is judged to be a more suitable blasting design for the site.

A Estimation of Soil Conversion Factor Using Digital Photogrammetry and 3D Laser Scanner (디지털사진측량 및 3D 레이저스캐너를 이용한 토랑환산계수의 산정)

  • Lee Jae-Kee;Jung Sung-Heuk;Lee Kye-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.227-234
    • /
    • 2006
  • Ministry of construction & transportation is operating for the soil and rock information system and is considered to accurate application of soil conversion factor that is essentially necessary for accurate calculation of earth volume. Since the balance of cutting earth in public work, the plan of spoil bank or borrow pit are directly related to construction costs, accurate calculation of earth volume and efficient scheme of haul are important. As such, this study has provided methods that can acquire information that is more rapid, applicable to job sites, and trustworthy by comparing resultant values of photogrammetry, laser scanning, or inside job site experimentations, and calculated soil conversion factor by applying photogrammetry and laser scanning methods for hard rock that has difficulty in calculating soil conversion factor. The study can provide alternatives that can resolve the problems of unbalanced earth volume that may arise in applying to plans the earth conversion factor that relies on planning books and experience without considering the characteristics of job site earth, and can establish its relevancy by calculating soil conversion factor for hard rock that has relative difficulties in doing inside or job site testing.

Time Change in Spatial Distributions of Light Interception and Photosynthetic Rate of Paprika Estimated by Ray-tracing Simulation (광 추적 시뮬레이션에 의한 시간 별 파프리카의 수광 및 광합성 속도 분포 예측)

  • Kang, Woo Hyun;Hwang, Inha;Jung, Dae Ho;Kim, Dongpil;Kim, Jaewoo;Kim, Jin Hyun;Park, Kyoung Sub;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • To estimate daily canopy photosynthesis, accurate estimation of canopy light interception according to a daily solar position is needed. However, this process needs a lot of cost, time, manpower, and difficulty when measuring manually. Various modeling approaches have been applied so far, but it was difficult to accurately estimate light interception by conventional methods. The objective of this study is to estimate the spatial distributions of light interception and photosynthetic rate of paprika with time by using 3D-scanned plant models and optical simulation. Structural models of greenhouse paprika were constructed with a portable 3D scanner. To investigate the change in canopy light interception by surrounding plants, the 3D paprika models were arranged at $1{\times}1$ and $9{\times}9$ isotropic forms with a distance of 60 cm between plants. The light interception was obtained by optical simulation, and the photosynthetic rate was calculated by a rectangular hyperbola model. The spatial distributions of canopy light interception of the 3D paprika model showed different patterns with solar altitude at 9:00, 12:00, and 15:00. The total canopy light interception decreased with an increase of surrounding plants like an arrangement of $9{\times}9$, and the decreasing rate was lowest at 12:00. The canopy photosynthetic rate showed a similar tendency with the canopy light interception, but its decreasing rate was lower than that of the light interception due to the saturation of photosynthetic rate of upper leaves of the plants. In this study, by using the 3D-scanned plant model and optical simulation, it was possible to analyze the light interception and photosynthesis of plant canopy under various conditions, and it can be an effective way to estimate accurate light interception and photosynthesis of plants.

A Novel in Vitro Method for the Metabolism Studies of Radiotracers Using Mouse Liver S9 Fraction (생쥐 간 S9 분획을 이용한 방사성추적자 대사물질의 새로운 체외 측정방법)

  • Ryu, Eun-Kyoung;Choe, Yearn-Seong;Kim, Dong-Hyun;Lee, Sang-Yoon;Choi, Yong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.325-329
    • /
    • 2004
  • Purpose: Usefulness of mouse liver S9 fraction was evaluated for the measurement of the metabolites in the in vitro metabolism study of $^{18}F$-labeled radiotracers. Materials and Methods: Mouse liver S9 fraction was isolated at au early step in the course of microsome preparation. The in vitro metabolism studies were tarried out by incubating a mixture containing the radiotracer, S9 fraction and NADPH at $37^{\ciirc}C$, and an aliquot of the mixture was analyzed at the indicated time points by radio-TLC. Metabolic defluorination was further confirmed by the incubation with calcium phosphate, a bone mimic. Results: The radiotracer $[^{18}F]1$ underwent metabolic defluorination within 15 min, which was consistent with the results of the in vivo method and the in vitro method using microsome. Radiotracer $[^{18}F]2$ was metabolized to three metabolites including $4-[^{18}F]fluorobenzoic$ acid within 60 min. It is likely that the one of these metabolites at the origin of radio-TLC was identical with the one that obtained from the in vivo and in vitro (microsome) method. Compared with the in vitro method using microsome, the method using S9 fraction gave a similar pattern of the metabolites but with a different ratio, which can be explained by the presence of cytosol in the S9 fraction. Conclusion: These results suggest that the findings of the in vitro metabolism studies using S9 fraction can reflect the in vivo metabolism of novel radiotracers in the liver. Moreover, this method can be used as a tool to determine metabolic defluorination along with calcium phosphate absorption method.

Effects of Attenuation and Scatter Corrections in Cat Brain PET Images Using microPET R4 Scanner (MicroPET R4 스캐너에서 획득한 고양이 뇌 PET 영상의 감쇠 및 산란보정 효과)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Jong-Jin;Lee, Byeong-Il;Park, Min-Hyun;Lee, Hyo-Jeong;Oh, Seung-Ha;Kim, Kyeong-Min;Cheon, Gi-Jeong;Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.40-47
    • /
    • 2006
  • Purpose: The aim of this study was to examine the effects of attenuation correction (AC) and scatter correction (SC) on the quantification of PET count rates. Materials and Methods: To assess the effects of AC and SC $^{18}F$-FDG PET images of phantom and cat brain were acquired using microPET R4 scanner. Thirty-minute transmission images using $^{68}Ge$ source and emission images after injection of FDG were acquired. PET images were reconstructed using 2D OSEM. AC and SC were applied. Regional count rates were measured using ROIs drawn on cerebral cortex including frontal, parietal, and latral temporal lobes and deep gray matter including head of caudate nucleus, putamen and thalamus for pre- and post-AC and SC images. The count rates were then normalized with the injected dose per body weight. To assess the effects of AC, count ratio of "deep gray matter/cerebral cortex" was calculated. To assess the effects of SC, ROIs were also drawn on the gray matter (GM) and white matter (WM), and contrast between them ((GM-WM)/GM was measured. Results: After the AC, count ratio of "deep gray matter/cerebral cortex" was increased by $17{\pm}7%$. After the SC, contrast was also increased by $12{\pm}3%$. Conclusion: Relative count of deep gray matter and contrast between gray and white matters were increased after AC and SC, suggesting that the AC would be critical for the quantitative analysis of cat brain PET data.

Principle and Recent Advances of Neuroactivation Study (신경 활성화 연구의 원리와 최근 동향)

  • Kang, Eun-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.172-180
    • /
    • 2007
  • Among the nuclear medicine imaging methods available today, $H_2^{15}O-PET$ is most widely used by cognitive neuroscientists to examine regional brain function via the measurement of regional cerebral blood flow (rCBF). The short half-life of the radioactively labeled probe, $^{15}O$, often allows repeated measures from the same subjects in many different task conditions. $H_2^{15}O-$ PET, however, has technical limitations relative to other methods of functional neuroimaging, e.g., fMRI, including relatively poor time and spatial resolutions, and, frequently, insufficient statistical power for analysis of individual subjects. However, recent technical developments, such as the 3-D acquisition method provide relatively good image quality with a smaller radioactive dosage, which in turn results in more PET scans from each individual, thus providing sufficient statistical power for the analysis of individual subject's data. Furthermore, the noise free scanner environment $H_2^{15}O$ PET, along with discrete acquisition of data for each task condition, are important advantages of PET over other functional imaging methods regarding studying state-dependent changes in brain activity. This review presents both the limitations and advantages of $^{15}O-PET$, and outlines the design of efficient PET protocols, using examples of recent PET studies both in the normal healthy population, and in the clinical population.

Comparison of Treatment Planning System(TPS) and actual Measurement on the surface under the electron beam therapy with bolus (전자선 치료 시 Bolus를 적용한 경우 표면선량의 Treatment Planning System(TPS) 계산 값과 실제 측정값의 비교)

  • Kim, Byeong Soo;Park, Ju Young;Park, Byoung Suk;Song, Yong Min;Park, Byung Soo;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Purpose : If electron, chosen for superficial oncotherapy, was applied with bolus, it could work as an important factor to a therapy result by showing a drastic change in surface dose. Hence the calculation value and the actual measurement value of surface dose of Treatment Planning System (TPS) according to four variables influencing surface dose when using bolus on an electron therapy were compared and analyzed in this paper. Materials and Methods : Four variables which frequently occur during the actual therapies (A: bolus thickness - 3, 5, 10 mm, B: field size - $6{\time}6$, $10{\time}10$, $15{\time}15cm2$, C: energy - 6, 9, 12 MeV, D: gantry angle - $0^{\circ}$, $15^{\circ}$) were set to compare the actual measurement value with TPS(Pinnacle 9.2, philips, USA). A computed tomography (lightspeed ultra 16, General Electric, USA) was performed using 16 cm-thick solid water phantom without bolus and total 54 beams where A, B, C, and D were combined after creating 3, 5 and 10 mm bolus on TPS were planned for a therapy. At this moment SSD 100 cm, 300 MU was investigated and measured twice repeatedly by placing it on iso-center by using EBT3 film(International Specialty Products, NJ, USA) to compare and analyze the actual measurement value and TPS. Measured film was analyzed with each average value and standard deviation value using digital flat bed scanner (Expression 10000XL, EPSON, USA) and dose density analyzing system (Complete Version 6.1, RIT, USA). Results : For the values according to the thickness of bolus, the actual measured values for 3, 5 and 10 mm were 101.41%, 99.58% and 101.28% higher respectively than the calculation values of TPS and the standard deviations were 0.0219, 0.0115 and 0.0190 respectively. The actual values according to the field size were $6{\time}6$, $10{\time}10$ and $15{\time}15cm2$ which were 99.63%, 101.40% and 101.24% higher respectively than the calculation values and the standard deviations were 0.0138, 0.0176 and 0.0220. The values according to energy were 6, 9, and 12 MeV which were 99.72%, 100.60% and 101.96% higher respectively and the standard deviations were 0.0200, 0.0160 and 0.0164. The actual measurement value according to beam angle were measured 100.45% and 101.07% higher at $0^{\circ}$ and $15^{\circ}$ respectively and standard deviations were 0.0199 and 0.0190 so they were measured 0.62% higher at $15^{\circ}$ than $0^{\circ}$. Conclusion : As a result of analyzing the calculation value of TPS and measurement value according to the used variables in this paper, the values calculated with TPS on 5 mm bolus, $6{\time}6cm2$ field size and low-energy electron at $0^{\circ}$ gantry angle were closer to the measured values, however, it showed a modest difference within the error bound of maximum 2%. If it was beyond the bounds of variables selected in this paper using electron and bolus simultaneously, the actual measurement value could differ from TPS according to each variable, therefore QA for the accurate surface dose would have to be performed.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

Development of cardiopulmonary resuscitation nursing education program of web-based instruction (웹 기반의 심폐소생술 간호교육 프로그램 개발)

  • Sin, Hae-Won;Hong, Hae-Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.4 no.1
    • /
    • pp.25-39
    • /
    • 2002
  • The purpose of this study is to develop and evaluate a web-based instruction Program(WBI) to help nurses improving their knowledge and skill of cardiopulmonary resuscitation. Using the model of web-based instruction(WBI) program designed by Rhu(1999), this study was carried out during February-April 2002 in five different steps; analysis, design, data collection and reconstruction, programming and publishing, and evaluation. The results of the study were as follows; 1) The goal of this program was focused on improving accuracy of knowledge and skills of cardiopulmonary resuscitation. The program texts consists of the concepts and importances of cardiopulmonary resuscitation(CPR), basic life support(BLS), advanced cardiac life support(ACLS), treatment of CPR, nursing care after CPR treatment. And in the file making step, photographs, drawings and image files were collected and edited by web-editor(Namo), scanner and Adobe photoshop program. Then, the files were modified and posted on the web by file transfer protocol(FTP). Finally, the program was demonstrated and once again revised by the result, and then completed. 2) For the evaluation of the program, 36 nurses who in K university hospital located in D city, and related questionnaire were distributed to them as well. Higher scores were given by the nurses in its learning contents with $4.2{\pm}.67$, and in its structuring and interaction of the program with $4.0{\pm}.79$, and also in its satisfactory of the program with $4.2{\pm}.58$ respectively. In conclusion, if the contents of this WBI educational program upgrade further based upon analysis and applying of the results the program evaluation, it is considered as an effective tool to implement for continuing education as life-long educational system for nurse.

  • PDF