• Title/Summary/Keyword: 26GHz

Search Result 351, Processing Time 0.023 seconds

A New Structure Frequency Doubler Using Phase Delay Line (위상 지연 선로를 이용한 새로운 구조의 주파수 2체배기)

  • Cho, Seung-Yong;Lee, Kyoung-Hak;Kim, Yong-Hwan;Do, Ji-Hoon;Lee, Hyung-Kyu;Hong, Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.213-219
    • /
    • 2007
  • In this paper, A novel structure of frequency doubler using Phase Delay line and $90^{\circ}$ Hybrid coupler at harmonic output have been designed and implemented to improve suppression. Proposed structure of frequency doubler improve output. coupling and fundamental suppression. Active frequency doubler with band from $2.13{\sim}2.15GHz\;to\;4.26{\sim}4.3GHz$ was designed and fabricated with 10dBm input power, 0.79dB conversion gain and -55.54dBc suppression at fundamental frequency, -44.76dBc suppression at third harmonic frequency 6.42GHz and -39.18dBc suppression at fourth harmonic frequency 8.56GHz.

Development of a Receiver Downconverter Module for Ka-band Satellite Payload (Ka-Band 위성중계기용 수신하향변환기 모듈 개발)

  • 장동필;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.68-74
    • /
    • 2003
  • This paper describes the design and the test results of the receiver-downconverter module for a Ka-band Satellite Payload. The developed module is not only a downconverter that convert the signal of 30.6 GHz∼31.0 GHz to the signal of 20.8 GHz∼21.2 GHz but also is a receiver that has the function of low noise amplification in the front stage. It has been fabricated and tested by the qualified satellite component manufacturing process and it shows the best performance of the receiver-downconverter modules operating at Ka-band frequency up to date. The module has the performance of 1.9 dB-NF, 55 dB-Gain, and 58 dBc-C/I3 fur the two tone signals of -59 dBm input power respectively at ambient temperature. It is a small and light module with the size of 93 mm${\times}$84 mm${\times}$26 mm and the weight of 240 g.

Design and Fabrication of 0.5~4 GHz Low Phase Noise Frequency Synthesizer (낮은 위상잡음 특성을 갖는 0.5~4 GHz 주파수 합성기 설계 및 제작)

  • Park, Beom-Jun;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.333-341
    • /
    • 2015
  • In this paper, a 0.5~4 GHz frequency synthesizer having good phase noise performance is proposed. Wideband output frequencies of the synthesizer were synthesized using DDS(Direct Digital Synthesizer) and analog direct frequency synthesis technology in order to obtain fast settling time. Also in order to get good phase noise performance, 2.4 GHz DDS clock was generated by VCO(Voltage Controlled Oscillator) which was locked by the 100 MHz reference oscillator using SPD(Sample Phase Detector). The phase noise performance of wideband frequency synthesizer was estimated and the results were compared with the measured ones. The measured phase noise of the frequency synthesizer was less then -121 dBc @ 100 kHz at 4 GHz.

Measurement and analysis of indoor corridor propagation path loss in 5G frequency band (5G 주파수 대역에서의 실내 복도 전파 경로손실 측정 및 분석)

  • Kim, Hyeong Jung;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.688-693
    • /
    • 2022
  • In this paper, channel propagation path loss was measured in building corridors for frequency bands of 3.7 GHz and 28 GHz, which are used in 5G mobile communication, and compared and analyzed with CI (Close-In) and FI (Floating-Intercept) channel models. To measure the propagation path loss, the measurement was performed while moving the receiver (Rx) from the transmitter (Tx) by 10 m. As a result of the measurement, the PLE (Path Loss Exponent) values of the CI model at 3.7 GHz and 28 GHz were 1.5293 and 1.7795, respectively, and the standard deviations were analyzed as 9.1606 and 8.5803, respectively. In the FI model, 𝛼 values were 79.5269 and 70.2012, 𝛽 values were -0.6082 and 1.2517, respectively, and the standard deviations were 5.8113 and 4.4810, respectively. In the analysis results through the CI model and the FI model, the standard deviation of the FI model is smaller than that of the CI model, so it can be seen that the FI model is similar to the actual measurement result.

Simultaneous Surveys of 22 GHz Water and 44 / 95 GHz Class I Methanol Masers toward High-Mass Protostellar Objects

  • Kim, Chang-Hee;Kim, Kee-Tae;Park, Young-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.80.1-80.1
    • /
    • 2014
  • We made simultaneous surveys of 22 GHz water and 44 / 95 GHz methanol masers toward 299 high-mass protostellar objects using the Korea VLBI Network (KVN) 21-m telescope. The sources were selected from the catalog of Red MSX Source (RMS) survey. Initial selection of the sample present high-mass protostellar objects in an evolutionary phase prior to ultra-compact HII regions, which have bolometric luminosities > $10^3L_{\odot}$ but are not associated with any radio continuum emission. After the follow-up work of ongoing RMS survey, final samples contains 56 sources classified as HII regions. We performed a simultaneous survey of 22 GHz water and 44 GHz methanol masers in 2011 and then conducted a simultaneous survey of 22 GHz water and 44 / 95 GHz methanol masers in 2012. The primary scientific goals of these surveys are to investigate the relationship among the three masers and to explore the relationship between each maser and the central star or the parental dense core. The detection rates of two epochs are 42% and 38% for water, 25% and 26% for 44 GHz methanol, and 23% (2012 only) for 95 GHz methanol masers. We performed a statistical analysis on subsample associated with a large data found in literature. In this poster, we will the preliminary data analysis results and discuss the implications.

  • PDF

Broad-band Microstrip Patch Antenna with Application in the 8-WLL System (B-WLL용 광대역 마이크로스트립 안테나)

  • 서성호;오순수;윤미경;김영식;오창열
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.381-384
    • /
    • 2000
  • A microstrip patch antenna with B-WLL applications is designed at 26.8GHz. A broad band is obtained by two additional parasitic elements which are closely located to the main patch. Bandwidth of the designed and manufactured antenna is 15% at the center frequency of 26.8GHz. Radiation pattern is measured over wide bandwidth.

  • PDF

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

  • Lee, Hyeonjin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1081-1085
    • /
    • 2015
  • In this paper a printed pair dipole antenna with double tapered microstrip balun for wireless communications is proposed. The proposed antenna consists of a pair arm of different sizes that is branched microstrip line and microstrip line with the ground plane on opposite side of the dielectric substrate plane. The proposed antenna is matched between the ground plane to the microstrip line by double tapered microstrip balun. This antenna obtains multi-band radiation frequency band. The impedance bandwidths for a reflection coefficient of VSWR ≤ 2 are about 1.01 GHz (2.35~3.336 GHz), 1.56 GHz (4.7~6.26 GHz) and 1.15GHz (6.85~8.0[GHz]). Additionally, the measurement peak gain is about 3.6 dBi. The proposed antenna is able to support wireless communication applications.

Design of 24-GHz Power Amplifier for Automotive Collision Avoidance Radars (차량 추돌 방지 레이더용 24-GHz 전력 증폭기 설계)

  • Noh, Seok-Ho;Ryu, Jee-Youl
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.117-122
    • /
    • 2016
  • In this paper, we propose 24-GHz CMOS radio frequency (RF) power amplifier for short-range automotive collision avoidance radars. This circuit contains common source stage with inter-stages conjugate matching circuit as a class-A mode amplifier. The proposed circuit is designed using TSMC $0.13-{\mu}m$ mixed signal/RF CMOS process ($f_T/f_{MAX}=120/140GHz$). It operates at the supply voltage of 2V, and it is designed to have high power gain, low insertion loss and low noise figure in the low supply voltage. To reduce total chip area, the circuit used transmission lines instead of the bulky real inductor. The designed CMOS power amplifier showed the smallest chip size of $0.1mm^2$, the lowest power consumption of 40mW, the highest power gain of 26.5dB, the highest saturated output power of 19.2dBm and the highest maximum power-added efficiency of 17.2% as compared to recently reported results.

Development of a Dual-Circular Polarizer for the KVN Receivers

  • Chung, Moon-Hee;Je, Do-Heung;Han, Seog-Tae;Lee, Jung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.345-354
    • /
    • 2009
  • A stepped septum polarizer has been designed and fabricated for the 43 GHz band KVN receiver system. The dual-circular polarizer converts left and right hand circularly polarized signals into linear polarizations in two separated rectangular waveguides. Measurements show that the performance of the designed septum polarizer covering 42-48 GHz frequency band is adequate to meet the requirement of KVN receivers. Especially, a polarizer for the KVN receiver of 85-95 GHz frequency band can be fabricated by scaling the dimensions of the septum polarizer developed in this paper.

A New High-Efficiency CMOS Darlington-Pair Type Bridge Rectifier for Driving RFID Tag Chips (RFID 태그 칩 구동을 위한 새로운 고효율 CMOS 달링턴쌍형 브리지 정류기)

  • Park, Kwang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1789-1796
    • /
    • 2012
  • In this paper, a new high-efficiency CMOS bridge rectifier for driving RFID tag chips is designed and analyzed. The input stage of the proposed rectifier is designed as a cascade structure connected with two NMOSs for reducing the gate capacitance by circuitry method, which is the main path of the leakage current that is increased when the operating frequency is increased. This gate capacitance reduction technique using the cascade input stage for reducing the gate leakage current is presented theoretically. The output characteristics of the proposed rectifier are derived analytically using its high frequency small-signal equivalent circuit. For the general load resistance of $50K{\Omega}$, the proposed rectifier shows better power conversion efficiencies of 28.9% for 915MHz UHF (for ISO 18000 -6) and 15.3% for 2.45GHz microwave (for ISO 18000-4) than those of 26.3% and 26.8% for 915MHz, and 13.2% and 12.6% for 2.45GHz of compared other two existing rectifiers. Therefore, the proposed rectifier may be used as a general purpose rectifier to drive tag chips for various RFID systems.