• Title/Summary/Keyword: 23S rRNA

Search Result 266, Processing Time 0.027 seconds

In vitro Selection of RNA Aptamers which Bind to Escherichia coli tRNAVal (대장균 tRNAVal에 결합하는 RNA Aptamer들의 시험관내 선별)

  • Jo, Bong Rae
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.157-163
    • /
    • 2002
  • To identify RNA motifs interacting with $tRNA^{Val}$, a SELEX(Systematic Evolution of Ligands by Exponential Enrichment) was applied. Random DNA library which contains a region of ran-domized 48-mer oligonucleotide flanked by conserved sequ ence primers was transcribed into RNA pool using T7 RNA polymerase and RNA aptamers were selected with $tRNA^{Val}$ -immobilized affinity column through 14 rounds of SELEX. Some of the resulting aptamers contained a consensus sequence similar to the sequence in the loop regions of three rRNAs; C43GAAC47 sequence of 5S rRNA, G1491AAGU1495, G1379UUCC1383 sequence of 16S rRNA and C1064UUAG1068, G2110UGUA2114, C2480GACGG2485, A2600CAGU2604 sequence of 23S rRNA. These results suggest that $tRNA^{Val}$ can interact with 5S rRNA, 16S rRNA and 23S rRNA with variety in ribosome.

Analysis of 16S-23S rRNA Intergenic Spacer Region of Vibrio vulnificus (Vibrio vulnificus의 16S-23S rRNA Intergenic Spacer Region 분석)

  • PARK Young Mi;LEE Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • We have examined the 16S-23S rRNA intergenic spacer region (ISR) of Vibrio vulnificus KCTC 2959. ISRs were amplified by primers complementary to conserved regions of 16S and 23S rRNA genes. ISR amplicons were cloned and sequenced. Analysis of the ISR sequences showed that V. vulnificus KCTC 2959 contains five types of polymorphic ISRs. Size of ISRs ranged from 424 to 741 bp in length and the number of tRNA genes ranged from one to four. The ISRs were designated as ISR-E $(tRNA^{Glu}),\;ISR-IA\;(tRNA^{Ile}-tRNA^{Ala})$, ISR-EKV $(tRNA^{Glu}-tRNA^{Lys}-tRNA^{Val})$, ISR-IAV $(tRNA^{Ile}-tRNA^{Ala}-tRNA^{val})$ and ISR-EKAV $(tRNA^{Glu}-tRNA^{Lys}-tRNA^{Ala}-tRNA^{Val})$ based on their tRNA genes. Multiple alignment of representative sequences from different Vibrio species revealed several domains of high sequence variability. We used the sequences of variable domains to design species-specific primer for detection PCR. Specificity of the primers was examined using genomic DNA prepared from 18 different Vibrio species. The results showed that the PCR using primers designed in this study can be used to detect V. vulnificus from other Vibrio species.

Use of 16S-23S rRNA Intergenic Spacer Region for identification in the fish pathogenic Streptococcus iniae (16S-23S rRNA Intergenic Spacer Region을 이용한 어류 병원성Streptococcus iniae의 분자생물학적 동정)

  • Jeong, Yong-Uk;Gang, Bong-Jo;Park, Geun-Tae;Heo, Mun-Su
    • Journal of fish pathology
    • /
    • v.17 no.2
    • /
    • pp.91-98
    • /
    • 2004
  • This study was performed for the identification of Streptococcus sp. from cultured flounders (Paralichthys olivaceus) showing streptococcosis in the Jeju island. We isolated 10 strains of Streptococcus iniae from the cultured olive flounders with streptococcosis. Isolated strains were identified in S. iniae since they have formed the expected band through performing PCR assay using specific primers, Sin-1 (5'-CTAGAGTACACATGTACT(AGCT)AAG-3') and Sin-2 (5'-GGATTTTCCACTCCCATTAC-3'). In addition to 16S-23S rRNA intergenic spacers (ISR), operon structure of isolated strains showed that all strains had three 16S-23S rRNA ISR band patterns. The 16S-23S rRNA ISR sequence of isolated strains showed 96% sequence identity with S. iniae (GenBank accession number AF 048773). This paper is the first report that S. iniae is associated with streptococcosis of Olive flounder in Korea.

Identification and Comparison of the Nucleotide Sequence of 16S-23S rRNA Gene Intergenic Small SR(Spacer Region) of Lactobacillus rhamnosus ATCC 53103 with Those of L. casei, L. acidophilus and L. helveticus

  • Byun, J.R.;Yoon, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1816-1821
    • /
    • 2003
  • Reliable PCR based identification of lactobacilli has been described utilizing the sequence of 16S-23S rRNA intergenic spacer region. Those sequence comparisons showed a high degree of difference in homology among the strains of L. rhamnosus, L. casei, L. acidophilus and L. helveticus whose 16S-23S rRNA intergenic small SR's sizes were 222 bp, 222 bp, 206 bp and 216 bp respectively. The sequence of 16S-23S rRNA intergenic spacer region of L. rhamnosus ATCC 53103 revealed the close relatedness to those of L. casei strains by the homology ranges from 95.4% to 97.2%. 16S-23S rRNA intergenic spacer region nucleotide sequence of L. acidophilus showed some distant relatedness with L. rhamnosus ATCC 53103 with the homology ranges from 40.3% to 41.8% and that with L. helveticus was shown to be 30% of homology, which exists at the most distant phylogenetic relatedness. The identification of species and strain of lactobacilli was possible on the basis of these results. The common sequences among the 17 strains were CTAAGGAA located in the initiating position of the DNA and some discrepancies were found between the same strains based on these results.

Genetic Similarity Between Jujube Witches¡?Broom and Mulberry Dwarf Phytoplasmas Transmitted by Hishimonus sellatus Uhler

  • Cha, Byeongjin;Han, Sangsub
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.98-101
    • /
    • 2002
  • Using phytoplasma universal primer pair Pl and P7, a fragment of about 1.8 kb nucleotide sequences of 16S rRNA gene and 16S-23S rRNA intergenic spacer region, and a portion of 23S rRNA gene of jujube witches'broom (JWB) and mulberry dwarf(MD) phytoplasmas were determined. The nucleotide sequences of JWB and MD were 1,850 bp and 1,831 bp long, respectively. The JWB phytoplasma sequence was aligned with the homologous sequence of MD phytoplasma. Twenty-eight base insertions and nine base deletions were found in the JWB phytoplasma sequence compared with that of MD phytoplasma. The similarity of the aligned sequences of JWB and MD was 84.8%. The near-complete 16S rRNA gene DNA sequences of JWB and MD were 1,529 bp and 1,530 bp in length, respectively, and revealed 89.0% homology. The 16S-23S rRNA intergenic spacer region DNA sequences were 263 bp and 243 bp in lengths respectively, while homology was only 70% and the conserved tRNA-lle gene of JWB and MD was located into the intergenic space region between 16S-23S rRNA gene. The nucleotide sequences were 77 bp long in both JWB and MD, and showed 97.4% sequence homology. Based on the phylogenetic analysis of the two phytoplasmas, the JWB phytoplasma belongs to the Elm yellow phytoplasma group (16S rV), whereas, the MD phytoplasma belongs to the Aster yellow group (16S rI).

Detection of Pectobacterium chrysanthemi Using Specific PCR Primers Designed from the 16S-23S rRNA Intergenic Spacer Region

  • Kwon, Soon-Wo;Myung, In-Sik;Go, Seung-Joo
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.252-256
    • /
    • 2000
  • The 16S-23S rRNA intergenic spacer regions (ISRs) were sequenced and analyzed to design specific primer for identification of Pectobacterium chrysanthemi. Two types ISRs, large and small ISRs, were identified from three strains (ATCC 11663, KACC 10163 and KACC 10165) of P. chrysanthemi and Pectobacterium carotovorum subsp. carotovorum ATCC 15713.Large ISRs contained transfer RNA-Ile(tRNA$^{Ile}$)and tRNA$^{Ala}$, and small ISRs contained tRNA$^{Glu}$. Size of the small ISRs of P. chrysanthemi ranged on 354-356 bp, while it was 451 bp in small ISR of P. carotovorum subsp. carotovorum ATCC 15713. From hypervariable region of small ISRs, species-specific primer for P. chrysanthemi with 20 bp length (CHPG) was designed from hypervariable region of small ISRs, which was used as forward promer to detect P. chrysanthemi strains with R23-1R produced PCR product of about 260bp size (CHSF) only from P. chrysanthemi strains, not from other Pectobacterium spp. and Erwinia spp. Direct PCR from bacterial cell without extracting DNA successfully amplified a specific fragment, CHSF, from P. chrysanthemi ATCC 11663. The limit of PCR detection was 1${\pm}10^2$ cfu/ml.

  • PDF

Use of 16S-23S rRNA Intergenic Spacer Region for Species-specific Primer Developed of Vibrio Ichthyoenteri (16S-23S rRNA Intergenic Spacer Region을 이용한 Vibrio ichthyoenteri Species-specific Primer 개발)

  • Moon Young-Gun;Heo Moon-Soo
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Two bacterial isolates obtained from rotifer and diseased olive flounder larvae, Paralichthys olivaceus, were identified as Vibrio ichthyoenteri based on the results of phenotypic characterization. In an attempt to develop rapid PCR method for the detection of V. ichthyoenteri, we examined the 16S-23S rRNA intergenic spacer region(ISR) of V. ichthyoenteri and developed species-specific primer for V. ichthyoenteri. Analysis of the ISR sequences showed that V. ichthyoenteri contains one type of polymorphic ISRs. The size of ISRs was 348 bp length and did not contain tRNA genes. Mutiple alignment of representative sequences from different V. species revealed several domains of high sequence variability, and allowed to design species-specific primer for detection of V. ichthyoenteri. The specificity of the primer was examined using genomic DNA prepared from 19 different V. species, isolated 18group Vibrio species and most similar sequence of other known Vibrio species. The results showed that the PCR reaction using species-specific primer designed in this study can be used to detect V. ichthyoenteri.

Detection of 23S rRNA Mutation Associated with Clarithromycin Resistance in Children with Helicobacter pylori Infection (소아 Helicobacter pylori 감염에서 Clarithromycin 내성과 연관된 23S rRNA의 돌연변이)

  • Ko, Jae Sung;Yang, Hye Ran;Seo, Jeong Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.7 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • Purpose: The resistance of H. pylori to clarithromycin is one of the major causes of eradication failure. In H. pylori, clarithromycin resistance is due to point mutation in 23S rRNA. The aims of this study were to investigate the mutation of 23S rRNA and to examine the association of cagA, vacA genotype and clarithromycin resistant genes. Methods: H. pylori DNA was extracted from antral biopsy specimens from 27 children with H. pylori infection. Specific polymerase chain reaction (PCR) assays were used for cagA and vacA. Mutations associated with clarithromycin resistance were detected by using PCR restriction fragment length polymorphism (RFLP) analysis of 23S rRNA gene. Results: A2143G mutation was detected in one case and A2144G in 4, indicating 18.5% were clarithromycin resistant. Among the total of 27, cagA was present in 25 (93%), vacA s1a/m1 in 6 (22%), s1a/m2 in 3 (11%), s1c/m1 in 16 (59%), and s1c/m2 in 1 (4%). All of the 5 clarithromycin resistant strains were cagA (+), among which 2 were s1a/m1 and 2 were s1c/m1. There was no relation between genotypes and clarithromycin resistant genes. Conclusion: Detection of H. pylori resistance to clarithromycin using PCR RFLP from biopsy specimens might be useful for the selection of antibiotics. Clarithromycin resistant genes are not associated with genotypes of cagA and vacA.

  • PDF

Phylogenetic Analysis of Pectobacterium Species Using the 16S-23S rRNA Intergenic Spacer Regions

  • Kwon, Soon-Wo;Cheun, Meung-Sook;Kim, Sang-Hee;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.98-104
    • /
    • 2000
  • For the taxonomic evaluaition, 15 strains of the genus Pectobacterium and Erwinia were analyzed for 16S-23S rDNA intergenic spacer regions (ISRs). These species contained two types of ISRs, large and small ISRs. Large ISRs were on the range of 474-569 bp size, and coding transfer $\textrm{RNA}^{11e}$($\textrm{tRNA}^{11e}$) and $\textrm{tRNA}^{Ala}$. Small ISRs were 354-459 bp in length and coding $\textrm{tRNA}^{Glu}$. The sequence variations of two ISRs among species and strains were very high as compared with 16S rRNA gene sequences. By phylogenetic trees on the basis of two ISRs, Pectobacterium ere differentiated into P. carotovorum-P. cactiaidum group and P. chrysanthemi group. However, the taxonomic position of E. cypripedii and E. rhapontici, which were not clear on taxonomic delineation between Pectobacterium and Erwinia, were not clearly resolved on the basis of ISRs.

  • PDF

Isolation and Genetic Characterization of Protease-Producing Halophilic Bacteria from Fermenting Anchovy (발효중인 멸치액젓에서 분리한 단백질분해효소 생산 호염성 세균의 유전적 특성)

  • Lee, Jin-Ho
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.167-176
    • /
    • 2012
  • Three protease-producing halophilic bacteria were isolated from fermenting anchovy. Isolated FAM 10, FAM 114, and FAM 115 were found to grow optimally at salt concentrations of 2-4%, 10%, and 6%, respectively, and could grow in salinity of up to 18-22%. The salinity conditions for optimum protease production were 6% in FAM 10 and 10% in FAM 114 and FAM 115. The protease activity of FAM 10 was gradually inhibited by the addition of NaCl up to 10%, and was not evident at 14%, whereas FAM 114 and FAM 115 displayed protease activity at 14% NaCl and could not be measured at 18%. These results demonstrated that the three isolated strains belong to protease-producing, moderately halophilic bacteria. Strain FAM 10, FAM 114, and FAM 115 were identified as Salinivibrio sp., Halobacillus sp., and Halobacillus sp. respectively, based on comparative analyses of the 16S rRNA gene and the 16S-23S intergenic space sequence (IGS), biochemical testing, and Gram staining. Salinivibrio sp. FAM 10 had two 16S rDNAs containing different sequences at position 191 and four IGSs that harbored no tRNA gene and tRNA genes for isoleucine, alanine, glutamate, lysine, and/or valine. Halobacillus sp. FAM 114 and FAM 115 had completely identical 16S rRNA gene sequences and showed 99% identity to the sequences of various Halobacillus strains. The three IGSs found in the genome of both strains displayed 99% sequence identity with Halobacillus aidingensis and Halobacillus sp. JM-Hb, and had $IGS^0$ with no tRNA gene and $IGS^{IA}$ with tRNA genes for isoleucine and alanine.