• 제목/요약/키워드: 2212

검색결과 296건 처리시간 0.026초

동테이프 위의 Bi-계 초전도 후막에서 전구체분말 조성의 영향 (The Effect of the precursor powder composition for Bi-system superconducting thick films on Cu tapes)

  • 한상철;성태현;한영희;이준성;김상준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 1999
  • A well oriented Bi2212 superconductor thick films were fabricated by screen printing with a Cu-free Bi-Sr-Ca-O mixture powder on a copper plate and heat-treating at 820-88$0^{\circ}C$ for several minute in air. During the heat-treatment, the printing layer partially melted by reaction between the Cu-free precursor and CuO of the oxidizing copper plate. In the partial melting state, it is believed that the solid phase is Bi-free phase and Cu-rich phase and the composition of the liquid is around Bi : Sr : Ca : Cu = 2 : 2 : 0 : 1. Following the partial melting, the Bi2212 superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows. With decreasing the Bi composition in the precursor powder, the critical temperature(T$_{c}$) of the fabricated Bi2212 thick film increased to about 79 K.K.

  • PDF

Bi계 세라믹에서 초전도체 특성에 미치는 도우핑 원소의 영향 (Effect of Doping Elements on Superconducting Characteristics in Bi-system Ceramics)

  • 양승호;박용필;김용주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 2000
  • This paper investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their superconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

Bi계 산화물 초전도체 2212상에 있어서 Bi 자리에 Ge 치환에 따른 초전도 특성 (Superconducting Properties of Ge Substitution for the Bi Site in the 2212 Phase of Bi-Sr-Ca-Cu-O Superconductors)

  • 신재수;이민수;최봉수;송승용;송기영
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.787-791
    • /
    • 2000
  • Samples with the nominal composition, Bi2-xGexSr2CaCu2O8+$\delta$ (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) were prepared by the solid-state reaction method. We have studied the effect of substitution Ge for Bi and investigated the superconducting properties by changing oxygen content with Ge substitution. It was found that temperature difference, ΔK, between TCon and TCzero was considerably smaller in the samples prepared by the intermediate pressing method than that in the samples by the solid-state reaction method. We found the solubility limit of Ge to the 80 K single phase was around x=0.3. Within the solubility limit, lattice constant c decreased with the increase of x. In the region of the 80K single phase, the onset critical temperature TCon increased and excess oxygen content decreased with increase of x.

  • PDF

Bi-Sr-Ca-Cu-O 세라믹의 도우핑 특성 (Deping characteristics of the Bi-Sr-Ca-Cu-O ceramics)

  • 박용필;김영천;황석영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 1996
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their supeconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

이온빔 스퍼터법으로 제작한 Bi 초전도 박막의 상안정 영역 (Phase Stability Region of Bi-superconductor Thin Films Prepared by IBS Technique)

  • 임중관;천민우;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.308-311
    • /
    • 2001
  • Bi-2212 and Bi-2223 thin films are prepared by IBS(ion beam sputtering) technique. Three phases of Bi-2201, Bi-2212 and Bi-2223 appear as stable ones in spite of the conditions for thin film fabrication of Bi-2212 and Bi-2223 compositions, depending on substrate temperature($T_{sub}$) and ozone pressure(PO$_3$). It is found out that these phases show similar $T_{sub}$ and PO$_3$ dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

MgO(100)기판에 성장시킨 Bi2212 에피택셜 박막의 R-T특성 (R-T characteristic of Bi2212 Epitaxial thin films by growth in MgO(100) substrate)

  • 양승호;임중관;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.537-538
    • /
    • 2006
  • BSCCO thin films have been fabricated by epitaxy growth at an ultra-low growth rate. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 650 and $720^{\circ}C$ and the highly condensed ozone gas pressure ($PO_3$) in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}\;Torr$.

  • PDF

초음파 분무열분해에 의한 Bi-Pb-Sr-Ca-Cu-O의 미분체 제조 (Direct Preparation of fine Powders of Bi-Pb-Sr-Ca-Cu-O by Ultrasonic Spray Pyrolysis)

  • 주명희;박도순;김윤수
    • 한국세라믹학회지
    • /
    • 제28권5호
    • /
    • pp.353-358
    • /
    • 1991
  • Fine powders of the 2212 superconducting phase of bismuth system have been prepared directly from solution using ultrasonic spray pyrolysis. The fine superconducting powders produced by pyrolysis were characterized for the size, shape, and crystalline phase by SEM and XRD. The pyrolysis temperature, flow rate of the carrier gas, residence time of the droplets greatly influenced the size, shape, and crystalline phase. The optimum temperature and flow rate of the carrier gas for the preparation of fine powders of the 2212 superconduting phase were found to be 830$^{\circ}C$and 3ι/min, respectively.

  • PDF