• Title/Summary/Keyword: 20ATZ

Search Result 6, Processing Time 0.023 seconds

Preparation of Sintered ATZ by Sol-Gel Process and Properties (졸-겔법에 의한 알루미나 강화 지르코니아 소결체의 제조 및 특성)

  • Han, Kyoung Ran;Park, Sun Jin;Hong, Kug-Sun;Jun, Hyung Woo
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.225-229
    • /
    • 1993
  • ATZ was prepared by adding an alumina sol equivalent to 2wt% as $Al_2O_3$ to an aqueous slurry of alumina (AKP-30) and zirconia (TZ-2Y or TZ-0Y) in the range of 10-30ATZ, followed by gelation, calcination, and sintereing between $1450^{\circ}C{\sim}1550^{\circ}C$ for 2h. They showed excellent microstructure with alumina grains of <$0.5{\mu}m$ and>99% of the theoretical density. Fracture toughness of ${\sim}8MPa{\cdot}m^{1/2}$ was observed around 20ATZ which was higher than $6MPa{\cdot}m^{1/2}$ obtainable by ball-milling.

  • PDF

Enzymatic Properties of Atrazine Chlorohydrolase Entrapped in Biomimetic Silica

  • Ho, Cuong Tu;Kang, Su-Il;Hur, Hor-Gil
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.143-147
    • /
    • 2008
  • Purified atrazine chlorohydrolase (AtzA) was entrapped in the nanoparticles of biomimetically synthesized silica at the ambient condition within 20 min. Entrapped AtzA in biomimetic silica was less affected by pH change and showed higher thermostability than free enzymes. The entrapped AtzA was also more tolerant against proteolysis, with 80% of the initial activity remaining and retained 82% of the initial activity even after four cycles of usage. These results suggest that entrapment of AtzA in biomimetic silica could be utilized under diverse environmental conditions with the active catalytic performance sustained.

Comparison of Anesthetic Effects Induced by Tiletamine-Zolazepam and Azaperone Plus Tiletamine-Zolazepam in Growing Pigs (돼지에서 Tiletamine-Zolazepam 단독과 Azaperone, Tiletamine-Zolazepam 합제의 마취 효과에 대한 비교)

  • Kim, Young-Suk;Kim, Myung-Jin;Lee, Soo-Jin;Lee, Jae-Il;Jun, Moo-Hyung;Park, Chang-Sik;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.300-304
    • /
    • 2007
  • The purpose of this study was to determine the anesthetic effects of tiletamine-zolazepam (TZ) alone and azaperone plus tiletamine-zolazepam in growing pigs, and to compare the various physiological parameters in both treatments. Cross experiment was accomplished at 2-week interval. Group 1 (TZ group): six pigs ($31.4{\pm}4.83$ kg) received 4.4 mg/kg of TZ alone. Group 2 (ATZ group); the same six pigs ($43.6{\pm}4.31$ kg) received 4.4 mg/kg of TZ twenty minutes after receiving 2 mg/kg of azaperone. All of the anesthetic drugs were injected into the trapezius muscles. The pigs were fasted for 24 hours before the experiments. Induction and recovery values were determined. Heart rate, respiratory rate, rectal temperature, $pO_2,\;pCO_2$ and pH were determined before administration and 5, 25, 45, 65 and 85 minutes after administration. Induction time of ATZ group was more rapid than that of TZ group (p<0.01). During recovery, sternal recumbency time, standing time and walking time of ATZ group were longer than those of TZ group (p<0.01). Heart rate, respiratory rate, $pO_2,\;pCO_2$, and pH did not show especial differences between the two groups. However, rectal temperature was significantly different between the TZ and ATZ group (p<0.05). As a result, ATZ group had a faster induction and a longer duration of anesthesia than TZ group did. Thus, it was concluded that ATZ combination could be usefully used for chemical restraint in pigs.

Preparation Method of 20wt% $Al_2$$O_3$/3Y-$ZrO_2$Composite through in situ Transformation of m-$ZrO_2$and its Mechanical Properties (m-$ZrO_2$의 in situ transformation에 의한 20wt% $Al_2$$O_3$/3Y-$ZrO_2$복합체 제조 및 향상된 기계적 특성)

  • 강건택;임경란
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1187-1191
    • /
    • 2000
  • 정방정형 지르코니아를 상온에서 안정화시키는 이트리아와, 지르코니아의 저온 열화을 억제하고 파괴강도의 증가에 기여하는 알루미나를 YAG(5Al$_2$O$_3$.3Y$_2$O$_3$) 졸의 형태로 m-ZrO$_2$와 알루미나의 혼합 slurry에 첨가하여, m-ZrO$_2$를 yttria 안정화 지르코니아로의 in situ 변환과 동시에 알루미나의 분산도를 향상시키고자 하였다. 20wt% 알루미나-지르코니아(YSZ)의 복합체 (20ATZ)를 1450$^{\circ}$~150$0^{\circ}C$에서 상압소결하여 0.5$mu extrm{m}$ 이하의 균일한 미세구조로 얻었다. 이 복합체는 정방정형 지르코니아와 $\alpha$-알루미나 상으로만 이루어지었고, 소결밀도 >99% TD이었다. 제조된 복합체의 파괴강도는 810 MPa로, 고상법으로 $Al_2$O$_3$와 3Y-ZrO$_2$분말로부터 제조된 시편의 682 MPa 보다 약 20% 향상되었고, 파괴인성은 5.52 MPa.m$^{1}$2/로 고상법으로 제조된 시편의 5.39 MPa.m$^{1}$2/과 비슷하였다.

  • PDF

Nonisothermal Decomposition Reaction Kinetics, Specific Heat Capacity, Thermodynamic Properties and Adiabatic Time-to-explosion of 4-Amino-1,2,4-triazole Copper Complex

  • Ren, Yinghui;Li, Dan;Yi, Jianhua;Zhao, Fengqi;Ma, Haixia;Xu, Kangzhen;Song, Jirong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1988-1992
    • /
    • 2010
  • 4-Amino-1,2,4-triazole copper complex (4-ATzCu) was synthesized, and its thermal behaviors, nonisothermal decomposition reaction kinetics were studied by DSC and TG-DTG techniques. The thermal decomposition reaction kinetic equation was obtained as: $d\alpha$ / dt =$10^{22.01}$ (1-$\alpha$)[-ln(1-$\alpha$)]$^{1/3}$ exp($-2.75\times10^4$ /T). The standard mole specific heat capacity of the complex was determined and the standard molar heat capacity is 305.66 $J{\cdot}mol^{-1}{\cdot}K^{-1}$ at 298.15 K. The entropy of activation $({\Delta}S^{\neq})$, enthalpy of activation $({\Delta}H^{\neq})$, and Gibbs free energy of activation $({\Delta}G^{\neq})$ are calculated as 171.88 $J{\cdot}mol^{-1}{\cdot}K^{-1}$ 225.81 $kJ{\cdot}mol^{-1}$ and 141.18 $kJ{\cdot}mol^{-1}$, and the adiabatic time-to-explosion of the complex was obtained as 389.20 s.

Arthrobacter sp. Strain KU001 Isolated from a Thai Soil Degrades Atrazine in the Presence of Inorganic Nitrogen Sources

  • Sajjaphan, Kannika;Heepngoen, Pimpak;Sadowsky, Michael J.;Boonkerd, Nantakorn
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.602-608
    • /
    • 2010
  • An atrazine-degrading bacterium, strain KU001, was obtained from a sugarcane field at the Cane and Sugar Research and Development Center at the Kasetsart University, Kamphaeng Saen Campus, Thailand. Strain KU001 had a rod-to-coccus morphological cycle during growth. Biolog carbon source analysis indicated that the isolated bacterium was Arthrobacter histidinolovorans. Sequence analysis of the PCR product indicated that the 16S rRNA gene in strain KU001 was 99% identical to the same region in Arthrobacter sp. The atrazine degradation pathway in strain KU001 consisted of the catabolic genes trzN, atzB, and atzC. Strain KU001 was able to use atrazine as a sole nitrogen source for growth, and surprisingly, atrazine degradation was not inhibited in cells grown on ammonium, nitrate, or urea, as compared with cells cultivated on growth-limiting nitrogen sources. During the atrazine degradation process, the supplementation of nitrate completely inhibited atrazine degradation activity in strain KU001, whereas ammonium and urea had no effect on atrazine degradation activity. The addition of strain KU001 to sterile or nonsterile soils resulted in the disappearance of atrazine at a rate that was 4- to 5-fold more than that achieved by the indigenous microbial community. The addition of citrate to soils resulted in enhanced atrazine degradation, where 80% of atrazine disappeared within one day following nutrient supplementation.