• Title/Summary/Keyword: 2.5-D modeling

Search Result 516, Processing Time 0.027 seconds

A Study of Performance Improvement of Two Dimensional FEC Schemes For Data Security (데이터보안을 위한 2차원 FEC기법의 성능 향상에 관한 연구)

  • Min, Sun-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.957-962
    • /
    • 2013
  • This paper proposes the new enhanced 2-D(2-Dimension) FEC scheme. It analyzes the probability of entire packet loss rate of the existing 2-D FEC by mathematical modeling, finds the problem of the existing 2-D FEC, and deduces the new enhanced 2-D FEC scheme that reduces the entire packet loss probability.

Singular Cell Integral of Green's tensor in Integral Equation EM Modeling (적분방정식 전자탐사 모델링에서 Green 텐서의 특이 적분)

  • Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • We describe the concept of the singularity in the integral equation of electromagnetic (EM) modeling in comparison with that in the integral representation of electric fields in EM theory, which would clarify the singular integral problems of the Green's tensor. We have also derived and classified the singular integrals of the Green's tensors in 3-D, 2.5-D and 2-D as well as in the thin sheet integral equations of the EM scattering problem, which have the most important effect on the accuracy of the numerical solution of the problems.

  • PDF

An Assessment of Air Sampling Location for Stack Monitoring in Nuclear Facility (원자력시설 굴뚝 내 공기시료채취 위치의 적절성 평가)

  • Lee, JungBok;Kim, TaeHyoung;Lee, JongIl;Kim, BongHwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • In this study, air sampling locations in the stack of the Advanced Fuel Science Building (AFSB) at the Korea Atomic Energy Research Institute (KAERI) were assessed according to the ANSI/HPS N13.1-1999 specification. The velocity profile, flow angle and $10{\mu}m$ aerosol particle profile at the cross-section as functions of stack height L and stack diameter D (L/D) were assessed according to the sampling location criteria using COMSOL. The criteria for the velocity profile were found to be met at 5 L/D or more for the height, and the criteria for the average flow angle were met at all locations through this assessment. The criteria for the particle profile were met at 5 L/D and 9 L/D. However, the particle profile at the cross-section of each sampling location was found to be non-uniform. In order to establish uniformity of the particle profile, a static mixer and a perimeter ring were modeled, after which the degrees of effectiveness of these components were compared. Modeling using the static mixer indicated that the sampling locations that met the criteria for the particle profile were 5-10 L/D. When modeling using the perimeter ring, the sampling locations that met the criteria for particle profile were 5 L/D and 7-10 L/D. The criteria for the velocity profile and the average flow angle were also met at the sampling locations that met the criteria for the particle profile. The methodologies used in this study can also be applied during assessments of air sampling locations when monitoring stacks at new nuclear facilities as well as existing nuclear facilities.

Flow Resistance and Modeling Rule of Fishing Nets 3. Establishment of Modeling Rule and its Theoritical Examination (그물어구의 유수저항과 모형수칙 3. 모형수칙의 수립 및 이론적 검토)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.543-549
    • /
    • 1997
  • The problems in the existing modeling rules for fishing nets, especially in the Tauti's rule which had been used most commonly, were investigated and it was found that the rules could not give a good similarity between the prototype and model nets because they din neither analyze the flow resistance of nets accurately nor decide the ratio of flow velocity between the two nets properly. Thus, the modeling rule was newly derived by regarding the nets as holey structures sucking water into their mouth and then filtering water through their meshes as in the previous paper. The similarity conditions obtained, between the two nets distinguished by subscript 1 and 2, are as follows; $$\frac{d_2}{d_1}=\sqrt{\frac{l_2}{l_1}},\;\frac{N_2}{N_1}=(\frac{d_1}{d_2})^{1.5}\frac{L_2}{L_1},\;\varphi_1=\varphi_2,\;\frac{d_{r2}}{d_{r1}}=\sqrt{\frac{L_2{(\rho_{r1}-\rho_{w1})}}{{L_1{(\rho_{r2}-\rho_{w2})}}$$ $$\frac{N_{a2}}{N_{a1}}=\frac{W_{a1}}{W_{a2}}(\frac{L_2}{L_1})^2,\;\nu_1=\nu_2\;and\;\frac{R_2}{R_1}=(\frac{L_2}{L_1})^2$$, where L is the length of nettings, d the diameter of netting twines, 2l the mesh size, $2\varphi$ the angle between two adjacent bars, N the number of meshes at the sides of nettings, $d_r$, the diameter of ropes, $\rho_r$, the specific gravity of ropes, $W_a$ the weight in water of one piece of float or sinker, $N_a$ the number of floats or sinkers, $\nu$ the flow velocity, and R the flow resistance of net. In the case where the model experiments aim at investigating the influence of weight in water of nettings on their shapes in nets subjected to the water flow of very low velocity, however, the following condition is added; $$\frac{\rho_2-\rho_{w2}}{\rho_1-\rho_{w1}}=\frac{d_1}{d_2}$$ where $\rho$ is the specific gravity of netting twines.

  • PDF

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.

A Study on Automated Quantity Take-off Methods of Earth Works in Road Design using 3D Design Concept (3차원 설계를 통한 도로설계단계의 토공 자동물량 산정 방안에 관한 연구)

  • Cho, Myunhwan;Kim, Nakseok;Chae, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.277-283
    • /
    • 2016
  • Recently, the interests in three-dimensional design and BIM(Building Information Modeling) are increasing in civil engineering sector and the researches about three-dimensional design and quantity take-off methods for civil engineering structures have been conducted. However, these studies are just carried out the 3D design and quantity calculation of civil structures on the road or railway such as bridges and tunnels. The study on the quantity take-off methods and the evaluation of calculated results on the earth works should be performed in more detail. Based on these backgrounds in mind, the study was conducted the three-dimensional road design and evaluated the quantity take-off results on the earth works using 3D calculation method(average end area method, prismoidal method and composit method). The calculated quantity from composit method showed about 5% error of measuring efficiency than the average end area method, and when reporting the quantity calculation of earth works, it is necessary to specify the calculation method using quantity take-off of earth works.

Fashion-show Animation Generation using a Single Image to 3D Human Reconstruction Technique (이미지에서 3차원 인물복원 기법을 사용한 패션쇼 애니메이션 생성기법)

  • Ahn, Heejune;Minar, Matiur Rahman
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.17-25
    • /
    • 2019
  • In this paper, we introduce the technology to convert a single human image into a fashion show animation video clip. The technology can help the customers confirm the dynamic fitting result when combined with the virtual try on technique as well as the interesting experience to a normal person of being a fashion model. We developed an extended technique of full human 2D to 3D inverse modeling based on SMPLify human body inverse modeling technique, and a rigged model animation method. The 3D shape deformation of the full human from the body model was performed by 2 part deformation in the image domain and reconstruction using the estimated depth information. The quality of resultant animation videos are made to be publically available for evaluation. We consider it is a promising approach for commercial application when supplemented with the post - processing technology such as image segmentation technique, mapping technique and restoration technique of obscured area.

Study on RF Plasma Modeling Between Unequal-Sized Electrodes Using One-dimensional Fluid Method (비대칭 전극계에서의 1차원적 RF 플라즈마 모델링에 관한 연구)

  • So Soon-Youl;Lim Jang-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.35-41
    • /
    • 2004
  • In computational study on RF(Radio Frequency) plasmas, a 1D fluid models with an advantage of a short computational time are often adopted. However, in order to obtain realistic calculation results under a typical chamber geometry with unequal-sized electrodes, modeling of the plasma space is an issue to be investigated. In this paper, it is focused on that how much a 1D model can approximate a 2D model. 1D fluid models with unequal-sized electrodes, which have spherical and frustum geometry systems, were developed and their results were compared with those of 2D model with Gaseous Electronic Conference cell structure. Behavior of $N_2$ RF plasmas has been simulated using 1D and 2D fluid models and a technique to take account of unequal-sized electrodes in a 1D fluid models has been examined. Features of the plasma density and the electric potential were discussed as characteristic quantities representing the asymmetry of the chamber geometry.

Convergence Modeling and Reproduction of a Bigyeokjincheolloe (Bomb Shell) Based on Three-dimensional Scanning and 𝛾-ray Radiography

  • Kim, Da Sol;Jo, Young Hoon;Huh, Il Kwon;Byun, Sung Moon
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • The Bigyeokjincheolloe (bomb shell), a scientific cultural heritage, has outstanding historical value for sustaining a gunpowder weapon of Joseon. In this study, the bomb shell was modeled through three-dimensional (3D) scanning centered on the external shape and 𝛾-ray radiography-based on the internal shape. In particular, to improve the contrast in the radiographic image, optimization and image processing were performed. After these processes, the thickness of the inner wall (2.5 cm on average) and the positions of the three mold chaplets were clearly revealed. For exhibition purposes, the 3D model of the bomb shell was output to a 3D printer and the output was rendered realistic by coloring. In addition, the internal functional elements, such as Mokgok, fuse, mud, gunpowder, and caltrops, were reproduced through handwork. The results will contribute to the study of digital heritages in two ways. First, the internal and external shapes of the bomb shell were modeled by fusing two different technologies, namely, 3D scanning and 𝛾-ray radiography. Second, the internal shape of the bomb shell was constructed from the original form data and the reproduction was utilized for museum exhibitions. The developed modeling approach will greatly expand the scope of museum exhibitions, from those centered on historical content to those centered on scientific content.