• Title/Summary/Keyword: 2.25CrMo steel

Search Result 122, Processing Time 0.016 seconds

Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold (진공사출금형용 STS316L 금속 다공체 제조 및 기계적 특성)

  • Kim, Se Hoon;Kim, Sang Min;Noh, Sang Ho;Kim, Jin Pyeong;Shin, Jae Hyuck;Sung, Si-Young;Jin, Jin Kwang;Kim, Taean
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2015
  • In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr- 13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under $45{\mu}m$ and over $180{\mu}m$, and then they were compacted with various pressures and sintered at $1210^{\circ}C$ for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to $79l/min{\cdot}cm^2$. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.

Limitation of Nitrogen ion Implantation and Ionplating Techniques Applied for Improvement of Wear Resistance of Metallic Implant Materials (금속 임플란트 소재의 내마모성 향상을 위하여 적용되는 질소 이온주입 및 이온도금법의 한계)

  • 김철생
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2004
  • Nitrogen ion implantation and ion plating techniques were applied for improvement of the wear resistance of metallic implant materials. In this work, the wear dissolution behaviour of a nitrogen ion implanted super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) was compared with those of S.S.S, 316L SS and TiN coated 316L SS. The amounts of Cr and Ni ions worn-out from the specimens were Investigated using an electrothermal atomic absorption spectrometry. Furthermore, the Ti(Grade 2) disks were coated with TiN, ZrN and TiCN by use of low temperature arc vapor deposition and the wear resistance of the coating layers was compared with that of titanium. The chemical compositions of the nitrogen ion implanted and nitride coated layers were examined with a scanting auger electron spectroscopy. It wat observed that the metal ions released from the nitrogen ion implanted S.S.S surface were significantly reduced. From the results obtained, it was shown that the nitrogen ion implanted zone obtained with 100 KeV ion energy was easily removed within 200,000 revolutions from a wear dissolution testing under a similar load condition when applied to artificial hip joint. The remarkable improvement in wear resistance weir confirmed by the nitrides coated Ti materials and the wear properties differ greatly according to the chemical composition of the coating layers. for specimens with the same coating thickness of about 3$\mu\textrm{m}$, TiCN coated Ti showed the highest wear resistance. However, after removing the coating layers, the wear rates of all nitrides coated Ti reverted to their normal rates of below 10,000 revolutions from Ti-disk-on-disk wear testing under the same load condition. From the results obtained, it is suggested that the insufficient depth of the 100 Kel N$\^$+/ ion implanted zone and of the nitrides coated layers of 3$\mu\textrm{m}$ are subject to restriction when used as frictional parts of load bearing implants.