• Title/Summary/Keyword: 2-phase model

Search Result 2,349, Processing Time 0.036 seconds

The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs (CMIP5 GCMs의 근 미래 한반도 극치강수 불확실성 전망 및 빈도분석)

  • Yoon, Sun-kwon;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.817-830
    • /
    • 2015
  • This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.

Optimization Condition of Trace Analysis of Fuel Oxygenated Compounds Using The Design of Experiment (DOE) in Solid-Phase Microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 실험계획법을 이용한 연료첨가제 미량분석의 최적조건)

  • An, Sang-Woo;Lee, Si-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • In this study, Solid-phase micro-extraction (SPME) with Gas Chromatograph using Flame Ionization Detector (GC/FID) was studied as a possible alternative to liquid-liquid extraction for the analysis of Methyl tert-butyl ether (MTBE) and Tertiary-butyl ether (TBA) in water and an optimization condition of trace analysis of MTBE and TBA using the design of experiment (DOE) was described. The aim of our research was to apply experimental design methodology in the optimization condition of trace analysis of fuel oxygenated compounds in soil-phase microextraction with GC/FID. The reactions of SPME were mathematically described as a function of parameters of Temp ($X_1$), Volume ($X_2$), Time ($X_3$) and Salt ($X_4$) being modeled by the use of the partial factorial designs, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The model predicted agreed with the experimentally observed result ($Y_1$(MTBE, $R^2$ = 0.96, $Y_2$ (TBA, $R^2$ = 0.98)). The estimated ridge of the expected maximum responses and optimal conditions for MTBE and TBA were 278.13 and (Temp ($X_1$) = $48.40^{\circ}C$, Volume ($X_2$) = 73.04 mL, Time ($X_3$) = 11.51 min and Salt ($X_4$) = 12,50 mg/L), and 127.89 and (Temp ($X_1$) = $52.12^{\circ}C$, Volume ($X_2$) = 88.88mL, Time ($X_3$) = 65.40 min and Salt ($X_4$) = 12,50 mg/L), respectively.

Modelling the Effects of Temperature and Photoperiod on Phenology and Leaf Appearance in Chrysanthemum (온도와 일장에 따른 국화의 식물계절과 출엽 예측 모델 개발)

  • Seo, Beom-Seok;Pak, Ha-Seung;Lee, Kyu-Jong;Choi, Doug-Hwan;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.253-263
    • /
    • 2016
  • Chrysanthemum production would benefit from crop growth simulations, which would support decision-making in crop management. Chrysanthemum is a typical short day plant of which floral initiation and development is sensitive to photoperiod. We developed a model to predict phenological development and leaf appearance of chrysanthemum (cv. Baekseon) using daylength (including civil twilight period), air temperature, and management options like light interruption and ethylene treatment as predictor variables. Chrysanthemum development stage (DVS) was divided into juvenile (DVS=1.0), juvenile to budding (DVS=1.33), and budding to flowering (DVS=2.0) phases for which different strategies and variables were used to predict the development toward the end of each phenophase. The juvenile phase was assumed to be completed at a certain leaf number which was estimated as 15.5 and increased by ethylene application to the mother plant before cutting and the transplanted plant after cutting. After juvenile phase, development rate (DVR) before budding and flowering were calculated from temperature and day length response functions, and budding and flowering were completed when the integrated DVR reached 1.33 and 2.0, respectively. In addition the model assumed that leaf appearance terminates just before budding. This model predicted budding date, flowering date, and leaf appearance with acceptable accuracy and precision not only for the calibration data set but also for the validation data set which are independent of the calibration data set.

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF

Removal of Sorbed Naphthalene from Soils Using Nonionic Surfactant (비이온성 계면활성제를 이용한 토양내 수착된 나프탈렌의 제거)

  • Ha, Dong-Hyun;Shin, Won-Sik;Oh, Sang-Hwa;Song, Dong-Ik;Ko, Seok-Oh
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.549-563
    • /
    • 2010
  • The environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) are mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation (SER) systems, surfactant plays a critical role in remediation. In this study, sorptive behaviors and partitioning of naphthalene in soils in the presence of surfactants were investigated. Silica and kaolin with low organic carbon contents and a natural soil with relatively higher organic carbon content were used as model sorbents. A nonionic surfactant, Triton X-100, was used to enhance dissolution of naphthalene. Sorption kinetics of naphthalene onto silica, kaolin and natural soil were investigated and analyzed using several kinetic models. The two compartment first-order kinetic model (TCFOKM) was fitted better than the other models. From the results of TCFOKM, the fast sorption coefficient of naphthalene ($k_1$) was in the order of silica > kaolin > natural soil, whereas the slow sorbing fraction ($k_2$) was in the reverse order. Sorption isotherms of naphthalene were linear with organic carbon content ($f_{oc}$) in soils, while those of Triton X-100 were nonlinear and correlated with CEC and BET surface area. Sorption of Triton X-100 was higher than that of naphthalene in all soils. The effectiveness of a SER system depends on the distribution coefficient ($K_D$) of naphthalene between mobile and immobile phases. In surfactant-sorbed soils, naphthalene was adsorbed onto the soil surface and also partitioned onto the sorbed surfactant. The partition coefficient ($K_D$) of naphthalene increased with surfactant concentration. However, the $K_D$ decreased as the surfactant concentration increased above CMC in all soils. This indicates that naphthalene was partitioned competitively onto both sorbed surfactants (immobile phase) and micelles (mobile phase). For the mineral soils such as silica and kaolin, naphthalene removal by mobile phase would be better than that by immobile phase because the distribution of naphthalene onto the micelles ($K_{mic}$) increased with the nonionic surfactant concentration (Triton X-100). For the natural soil with relatively higher organic carbon content, however, the naphthalene removal by immobile phase would be better than that by mobile phase, because a high amount of Triton X-100 could be sorbed onto the natural soil and the sorbed surfactant also could sorb the relatively higher amount of naphthalene.

Machine Learning-based Phase Picking Algorithm of P and S Waves for Distributed Acoustic Sensing Data (분포형 광섬유 센서 자료 적용을 위한 기계학습 기반 P, S파 위상 발췌 알고리즘 개발)

  • Yonggyu, Choi;Youngseok, Song;Soon Jee, Seol;Joongmoo, Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.177-188
    • /
    • 2022
  • Recently, the application of distributed acoustic sensors (DAS), which can replace geophones and seismometers, has significantly increased along with interest in micro-seismic monitoring technique, which is one of the CO2 storage monitoring techniques. A significant amount of temporally and spatially continuous data is recorded in a DAS monitoring system, thereby necessitating fast and accurate data processing techniques. Because event detection and seismic phase picking are the most basic data processing techniques, they should be performed on all data. In this study, a machine learning-based P, S wave phase picking algorithm was developed to compensate for the limitations of conventional phase picking algorithms, and it was modified using a transfer learning technique for the application of DAS data consisting of a single component with a low signal-to-noise ratio. Our model was constructed by modifying the convolution-based EQTransformer, which performs well in phase picking, to the ResUNet structure. Not only the global earthquake dataset, STEAD but also the augmented dataset was used as training datasets to enhance the prediction performance on the unseen characteristics of the target dataset. The performance of the developed algorithm was verified using K-net and KiK-net data with characteristics different from the training data. Additionally, after modifying the trained model to suit DAS data using the transfer learning technique, the performance was verified by applying it to the DAS field data measured in the Pohang Janggi basin.

Inhibitory effects of 2,6-di-tert-butyl-4-hydroxymethylphenol on asthmatic responses to ovalbumin challenge in conscious guinea pigs

  • Jeong, Seul-Yong;Lee, Ji-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • This study evaluated the anti-asthmatic activities of 2,6-di-tert-butyl-4-hydroxymethylphenol (DBHP) that is a potent phenolic antioxidant in edible vegetable oil. The effects of DBHP on bronchial asthma were evaluated by determining the specific airway resistance (sRaw) and tidal volume (TV) during the immediate asthmatic response (IAR) and the late-phase asthmatic response (LAR) in guinea pigs with aerosolized ovalbumin-induced asthma. Recruitment of leukocytes and the levels of biochemical inflammatory mediators were determined in the bronchoalveolar lavage fluids (BALFs), and histopathological surveys performed in lung tissues. DBHP significantly inhibited the increased sRaw and improved the decreased TV on IAR and LAR, and also inhibited recruitment of eosinophils and neutrophils into the lung, and release of biochemical inflammatory mediators such as histamine and phospholipase $A_2$ from these infiltrated leukocytes, and improved pathological changes. However, anti-asthmatic activities of DBHP at oral doses of 12.5 to 50 mg/kg was less than those of dexamethasone (5 mg/kg, p.o.) and cromoglycate (10 mg/kg, p.o.), but more potent or similar to that of salbutamol (5 mg/kg, p.o.). These results in the present study suggest that anti-asthmatic effects of DBHP in the guinea pigs model of OVA-induced asthmatic responses principally are mediated by inhibiting the recruitments of the leukocytes and the release of biochemical inflammatory mediators from these infiltrated leukocytes.

Seasonal Variation of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) on Anmyeon Island (안면도에서 대기 중 가스상 PAHs의 계절적 변동)

  • An, Joon-Geon;Yim, Un-Hyuk;Shim, Won-Joon;Kim, Gi-Beum;Kim, Seung-Kyu;Yi, Hi-Il
    • Ocean and Polar Research
    • /
    • v.31 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Passive air samplers with polyurethane foam (PUF) disks were employed to determine seasonal gas phase variation of polycyclic aromatic hydrocarbons (PAHs) in ambient air on Anmyeon island from March 2007 to January 2008. Sum of 13 PAHs ranged between $3.5\;ng/m^3$ and $27.6\;ng/m^3$. Total PAHs during the heating season was 6.2 times higher than non-heating season. The dominant PAHs components during sampling periods were low and middle molecular weight PAHs including phenanthrene, fluoranthene, pyrene and chrysene. Gas exchange fluxes of PAHs across the air-water interface of the Yellow Sea were calculated using a modified two-film exchange model. PAHs fluxes ranged from $196\;ng/m^2/d$ net volatilization during summer to $3830\;ng/m^2/d$ net absorption during winter. Passive air sampler provides a convenient and cost-effective tool for measuring averaged gas phase PAHs, which was successfully used for calculation of gas exchange flux of PAHs in the Yellow Sea.

Performance Evaluation between Alternating Type Process and Recirculating Type Process by using a Mathematical Model (수학적 모델을 활용한 alternating 형태 공정과 recirculating 형태 공정의 성능 평가)

  • Kim, Hyosoo;Kim, Yejin;Cha, Jaewhan;Choi, Soojung;Min, Kyungjin;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.160-167
    • /
    • 2010
  • In this research, the performance evaluation between an alternating type process and a recirculating type process was investigated by using mathematical models. The Advanced Phase Isolation Ditch (APID) process and the $A^2/O$ process were selected the target processes of the alternating type and recirculating type, respectively. For more quantitative evaluation, 5 performance indexes which included economy and energy efficiency as well as effluent quality were used, and various disturbance conditions of influent were given to the process models. As simulation results, the APID process which had the specific operation modes to use the organic matter in influent effectively showed higher efficiency of denitrification than the $A^2/O$ process. In the case of effluent TSS, the $A^2/O$ process that the retention time in reactors could be maintained stably was more effective than the APID process. In the cases of various disturbance condition, although it was identified that both two processes had similar effluent quality, the sludge production of the $A^2/O$ process showed lower than that of the APID process while the APID process showed higher energy efficiency.

A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases (회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계)

  • Pyo, Sang-Hun;Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.