• Title/Summary/Keyword: 2-phase model

Search Result 2,319, Processing Time 0.033 seconds

Nonlinear State Feedback for Minimum Phase in Nuclear Steam Generator Level Dynamics

  • Jeong, Seong-Uk;Choi, Jung-In
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.66-70
    • /
    • 1997
  • The steam generator level is susceptible to the nonminimum phase in dynamics due to the thermal reverse effects known as "shrink and swell" in a pressurized water reactor. A state feedback assisted control concept is presented for the change of dynamic performance to the minimum phase the concept incorporates a nonlinear digital observer as a part of the control system. The observer is deviced to estimate the state variables that provide the true indication of water inventory by compensating for shrink and swell effects. The concept is validated with implementation into the steam generator simulation model.

  • PDF

KARI LSWT Wind Tunnel Test for Wind Turbine 2;NREL Phase VI 12% Model (KARI LSWT 표준풍력터빈 풍동시험 2;NREL Phase VI 12% 모델)

  • Cho, Tae-Hwan;Kim, Yang-Won;Lee, Deok-Ho;Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.357-360
    • /
    • 2007
  • NREL Phase VI 12% 축소모델을 사용한 표준풍력터빈 풍동시험은 2006년에 1차 시험이 수행되었다. 1차 풍동시험은 복합재 블레이드를 사용하여 표준조건(설치각 3도)에 대해 수행되었으며 블레이드 표면상태에 따라 측정값이 영향을 받는 것을 파악하였다. 2007년 4월에 수행된 2차 풍동시험은 표면상태의 영향을 보다 정확히 파악하기 위해 알루미늄 블레이드를 사용하여 시험을 수행하였으며, 블레이드 제작 정밀도에 따른 영향을 파악하였다. 낮은 레이놀즈 수 영역(저속영역)에서는 블레이드 표면상태 따라 토크 값 다르게 나타나며, 블레이드 끝단 부근의 제작 정밀도는 최대 토크 이후의 영역에 영향을 미치는 것으로 나타났다. 0.1mm 이내의 정밀도로 제작된 모델의 경우 NREL 시험결과와 전체적인 형상이 유사하게 나타나며, 축소효과에 의한 영향으로 최대토크는 약 25% 정도 감소현상을 보이고 있다.

  • PDF

Switching Pattern-Independent Simulation Model for Brushless DC Motors

  • Kang, Yong-Jin;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.173-178
    • /
    • 2011
  • In order to verify the performance of brushless DC (BLDC) motors, the simulation method has been widely used. The current of a BLDC motors flows on two phase windings to obtain a constant torque. However, the freewheeling current caused by the inductance component of a BLDC motor exists at the commutation point so that the current can flow on three phase windings at the same time. Due to the changes of the excited phases, the model equations are frequently changed during BLDC motor drive operation. The model equations can be also changed by the applied switching pattern since the current path in the inverter circuit changes according to switching pattern. A BLDC motor system can utilize various switching patterns for many different purposes. However, such changes of the model equations complicate the simulation procedure. In this paper, the technique to set up model equations is proposed to ease the simulation of a BLDC motor system through an inverter circuit analysis. The proposed technique will be verified using the C language. Although this method does not provide the level of detail obtainable from commercial simulation tools like PSIM or SIMULINK, it can provide an efficient way to quickly compare various conditions.

NEAR-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW USING WALL BOILING MODEL (벽 비등모델을 이용한 과냉비등 유동에 대한 CFD 모의계산에서 벽 인접격자의 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2010
  • boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.

Building Error-Reflected Models for Collaborative Filtering Recommender System (협업적 여과 추천 시스템을 위한 에러반영 모델 구축)

  • Kim, Heung-Nam;Jo, Geun-Sik
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.451-462
    • /
    • 2009
  • Collaborative Filtering (CF), one of the most successful technologies among recommender systems, is a system assisting users in easily finding the useful information. However, despite its success and popularity, CF encounters a serious limitation with quality evaluation, called cold start problems. To alleviate this limitation, in this paper, we propose a unique method of building models derived from explicit ratings and applying the models to CF recommender systems. The proposed method is divided into two phases, an offline phase and an online phase. First, the offline phase is a building pre-computed model phase in which most of tasks can be conducted. Second, the online phase is either a prediction or recommendation phase in which the models are used. In a model building phase, we first determine a priori predicted rating and subsequently identify prediction errors for each user. From this error information, an error-reflected model is constructed. The error-reflected model, which is reflected average prior prediction errors of user neighbors and item neighbors, can make accurate predictions in the situation where users or items have few opinions; this is known as the cold start problems. In addition, in order to reduce the re-building tasks, the error-reflected model is designed such that the model is updated effectively and users'new opinions are reflected incrementally, even when users present a new rating feedback.

Real scale lunar apparent albedo and moonshine simulation with improved 3D lunar optical model with Apollo 10084 soil sample

  • Yu, Jinhee;Kim, Sug-Whan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.210.2-210.2
    • /
    • 2012
  • Using Fresnel reflection and Hapke BRDF model with Apollo 10084 soil sample's scattering properties, we constructed a real scale optical lunar model and used it to simulate lunar apparent albedo and moonshine. For Fresnel reflection, the refractive index of $1.68{\pm}0.5$ was used. For Hapke BRDF parameters from BUGs BRDF measurement, the single scattering with w=0.33, hot spot width h=0.017, average phase angle ${\zeta}$=-0.086 and Legendre polynomial coefficients b=0.308, c=0.425 in wavelength 700nm with two types of Henyey-Greenstein phase function was applied. The computation model includes the Sun as a Lambertian scattering sphere, emitting 1.5078 W/m2 at 700nm in wavelength. The Sun and Moon models were then imported into the IRT based radiative transfer computation. The trial simulation of the irradiance levels of moonshine lights shows that they agree well with the ROLO measurement data. We then estimate the lunar apparent albedo to 0.11. The results are to be compared with the measurement data.

  • PDF

Effect of Flow Distribution on the Combustion Efficiency In an Entrained-Bed Coal Reactor (분류층 석탄반응로에서 유동분포가 연소성능에 미치는 영향)

  • CHO, Han Chang;SHIN, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • A numerical study was carried out to analyze the effect of flow distribution of stirred part and plug flow part on combustion efficiency at the coal gasification process in an entrained bed coal reactor. The model of computation was based on gas phase eulerian balance equations of mass and momentum. The solid phase was described by lagrangian equations of motion. The $k-{\varepsilon}$ model was used to calculate the turbulence flow and eddy dissipation model was used to describe the gas phase reaction rate. The radiation was solved using a Monte-Carlo method. One-step parallel two reaction model was employed for the devolatilization process of a high volatile bituminous Kideco coal. The computations agreed well with the experiments, but the flame front was closer to the burner than the measured one. The flow distribution of a stirred part and a plug flow part in a reactor was a function of the magnitude of recirculation zone resulted from the swirl. The combustion efficiency was enhanced with decreasing stirred part and the maximum value was found around S=1.2, having the minimum stirred part. The combustion efficiency resulted from not only the flow distribution but also the particle residence time through the hot reaction zone of the stirred part, in particular for the weak swirl without IRZ(internal recirculation zone) and the long lifted flame.

Numerical Study on the Atomization Process of a Supersonic Gas-Metallic Liquid Atomizer (초음속기체-금속액체 분사기의 미립화 과정에 대한 수치해석)

  • Hwang, Won-Sub;Kim, Kui-Soon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.593-602
    • /
    • 2016
  • Numerical simulations on the close-coupled supersonic gas atomizer for metallic powder production were performed in this study. A proper turbulence model was chosen and then VOF(Volume of Fluid) and DPM(Discrete Phase Model) methods were sequentially applied for the simulations of primary and secondary break-up processes of liquid metal. Diameters of parent droplets were calculated by analyzing Level-Set function contour from the VOF result. Finally, the distribution of particle diameter was obtained from the DPM result at exit of the computational domain.

Numerical simulation of a toroidal single-phase natural circulation loop with a k-kL-ω transitional turbulence model

  • Yiwa Geng;Xiongbin Liu;Xiaotian Li;Yajun Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • The wall friction correlations of oscillatory natural circulation loops are highly loop-specific, making it difficult to perform 1-D system simulations before obtaining specific experimental data. To better predict the friction characteristics, the nonlinear dynamics of a toroidal single-phase natural circulation loop were numerically investigated, and the transition effect was considered. The k-kL-ω transitional turbulence and k-ω SST turbulence models were used to compute the flow characteristics of the loop under different heating powers varying from 0.48 to 1.0 W/cm2, and the results of both models were compared with previous experiments. The mass flow rates and friction factors predicted by the k-kL-ω model showed a better agreement with the experimental data than the results of the k-ω SST model. The oscillation frequencies calculated using both models agreed well with the experimental data. The k-kL-ω transitional turbulence model provided better friction-factor predictions in oscillatory natural circulation loops because it can reproduce the temporal and spatial variation of the wall shear stress more accurately by capturing the movement of laminar, transition turbulent zones inside unstable natural circulation loops. This study shows that transition effects are a possible explanation for the highly loop-specific friction correlations observed in various oscillatory natural circulation loops.

Approximate Model of Viscous and Squeeze-film Damping Ratios of Heat Exchanger Tubes Subjected to Two-Phase Cross-Flow (2 상 유동장에 놓인 열 교환기 튜브에 작용하는 점성과 압착막 감쇠비의 어림적 해석 모델)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.97-107
    • /
    • 2015
  • An analytical model was developed to estimate the viscous and squeeze-film damping ratios of heat exchanger tubes subjected to a two-phase cross-flow. Damping information is required to analyze the flow-induced vibration problem for heat exchange tubes. In heat exchange tubes, the most important energy dissipation mechanisms are related to the dynamic interaction between structures such as the tube and support and the liquid. The present model was formulated considering the added mass coefficient, based on an approximate model by Sim (1997). An approximate analytical method was developed to estimate the hydrodynamic forces acting on an oscillating inner cylinder with a concentric annulus. The forces, including the damping force, were calculated using two models developed for relatively high and low oscillatory Reynolds numbers, respectively. The equivalent diameters for the tube bundles and tube support, and the penetration depth, are important parameters to calculate the viscous damping force acting on tube bundles and the squeeze-film damping forces on the tube support, respectively. To calculate the void fraction of a two-phase flow, a homogeneous model was used. To verify the present model, the analytical results were compared to the results given by existing theories. It was found that the present model was applicable to estimate the viscous damping ratio and squeeze-film damping ratio.