• 제목/요약/키워드: 2-phase Fluid Flow

검색결과 322건 처리시간 0.031초

2 상 횡 유동장에 놓인 관군의 유체탄성불안정성 (Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow)

  • 심우건;박미연
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.

Optical Image Encryption Technique Based on Hybrid-pattern Phase Keys

  • Sun, Wenqing;Wang, Lei;Wang, Jun;Li, Hua;Wu, Quanying
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.540-546
    • /
    • 2018
  • We propose an implementation scheme for an optical encryption system with hybrid-pattern random keys. In the encryption process, a pair of random phase keys composed of a white-noise phase key and a structured phase key are positioned in the input plane and Fourier-spectrum plane respectively. The output image is recoverable by digital reconstruction, using the conjugate of the encryption key in the Fourier-spectrum plane. We discuss the system encryption performance when different combinations of phase-key pairs are used. To measure the effectiveness of the proposed method, we calculate the statistical indicators between original and encrypted images. The results are compared to those generated from a classical double random phase encoding. Computer simulations are presented to show the validity of the method.

기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구 (A Study on the Performance of a Centrifugal Pump with Two-Phase Flow)

  • 이종철;김윤제;김철수
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF

EFFECT OF MAGNETIC FIELD ON LONGITUDINAL FLUID VELOCITY OF INCOMPRESSIBLE DUSTY FLUID

  • N. JAGANNADHAM;B.K. RATH;D.K. DASH
    • Journal of applied mathematics & informatics
    • /
    • 제41권2호
    • /
    • pp.401-411
    • /
    • 2023
  • The effects of longitudinal velocity dusty fluid flow in a weak magnetic field are investigated in this paper. An external uniform magnetic field parallel to the flow of dusty fluid influences the flow of dusty fluid. Besides that, the problem under investigation is completely defined in terms of identifying parameters such as longitudinal velocity (u), Hartmann number (M), dust particle interactions β, stock resistance γ, Reynolds number (Re) and magnetic Reynolds number (Rm). While using suitable transformations of resemblance, The governing partial differential equations are transformed into a system of ordinary differential equations. The Hankel Transformation is used to solve these equations numerically. The effects of representing parameters on the fluid phase and particle phase velocity flow are investigated in this analysis. The magnitude of the fluid particle is reduced significantly. The result indicates the magnitude of the particle reduced significantly. Although some of our numerical solutions agree with some of the available results in the literature review, other results differs because of the effect of the introduced magnetic field.

난류유동장에서 Shear - thinning 유체에 의한 마찰저항 감소에 관한 연구 (A Study on the Drag Reduction by Shear-thinning Fluid in Turbulent Flow Fields)

  • 차경옥;김재근;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.126-135
    • /
    • 1997
  • Drag reduction in polymer solutions is the phenomenon where by extremely dilute solutions of high molecular weight polymers exhibit frictional resistance to flow much lower than the pure solvent. This effect, largely unexplained as yet, has attracted the attention of polymer scientists and fluid flow specialists. Although applications are beginning to appear, the principle interest to data has been in attempting to relate the effect to the fluid mechanics of turbulent flow. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, and pool and boiling flow. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced by polymer addition in the single phase and two phase flow system. The objectives of the proposed investigation are primarily in identifying and developing high performance polymer additives for fluid transportations with the benefits of turbulent drag. Also we want to is to evaluate the drag reduction in horizontal flow by measuring pressure drop and mean velocity. Experimental results show higher drag reduction using co - polymer(A611P) then using polyacrylamide (PAAM) and faster degradation using PAAM than using A611P under the same superficial velocity.

  • PDF

2상 횡유동을 받는 튜브군의 유체탄성 불안정성 (Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow)

  • 김범식;장효환
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1948-1966
    • /
    • 1991
  • 본 연구에서는 2상 횡유동을 받는 튜브군의 진동 메카니즘을 규명하기 위한 실험계획의 일환으로 실시된 실험으로부터 튜브군의 유체탄성 불안정성 상수에 관해 고찰하였다. 실험은 먼저 p/d=1.47 및 1.32 튜브군에 대해 수행되었는데, 이들 튜브 군의 결과는 참고문헌에 발표하였다. 본 논문은 후속 실험으로 수행된 p/d=1.22인 튜브군을 사용하여 유체탄성 불안정성 상수를 고찰한 참고문헌의 후속논문이다. 실 험은 액체상태로 부터 99% 보이드율(void fraction)까지 변화된 2상 유동에서 튜브가 유체탄성 불안정성 상태에 도달할 때까지 점진적으로 증가하였다.실험결과는 p/d= 1.32 alc 1.47 튜브군의 유체탄성 불안정성 결과들과 종합. 비교되었다.

헬리컬 증기발생기 코일에서 강제대류 비등 열전달 및 유동의 수치 적 예측 (Numerical Prediction of Forced Convective Boiling Heat Transfer and Flow in Steam Generator Helical Coils)

  • 조종철;김효정;김웅식;유선오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.127-130
    • /
    • 2004
  • In this study, three-dimensional numerical calculations are peformed to simulate the flow and heat transfer in helically coiled tube steam generator employing a commercial CFD (Computational Fluid Dynamics) code. The problem considered herein includes the boiling phase change flow of tube side fluid and the single-phase counter-current flow of shell side hot fluid transferring heat to the tube side flow thru the tube wall. Detailed investigations are performed for both shell-side and tube-side flow fields in terms of density and volume fractions of each phase of fluids as well as for the tube wall heat transfer field in terms of heat transfer coefficients.

  • PDF

Study on Design of Air-water Two-phase Flow Centrifugal Pump Based on Similarity Law

  • Matsushita, Naoki;Furukawa, Akinori;Watanabe, Satoshi;Okuma, Kusuo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.127-135
    • /
    • 2009
  • A conventional centrifugal pump causes a drastic deterioration of air-water two-phase flow performances even at an air-water two-phase flow condition of inlet void fraction less than 10% in the range of relatively low water flow rate. Then we have developed a two-phase flow centrifugal pump which consists of a tandem arrangement of double rotating cascades and blades of outer cascade have higher outlet angle more than $90^{\circ}$. In design of the two-phase flow pump for various sized and operating conditions, similarity relations of geometric dimensions to hydraulic performances is very useful. The similarity relations of rotational speed, impeller diameter and blade height are investigated for the developed impeller in the present paper. As the results, the similarity law of rotational speed and impeller diameter is clarified experimentally even in two-phase flow condition. In addition, influences of blade height on air-water two-phase flow performances indicate a little difference from the similarity relations.

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권3호
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

2-유체 2상-유동 모델에서 근사 Jacobian 행렬을 이용한 2차원 캐비테이션의 예측 (TWO-DIMENSIONAL CAVITATION PREDICTION BASED ON APPROXIMATE JACOBIAN MATRIX IN TWO-FLUID TWO-PHASE FLOW MODELS)

  • 염금수;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.183-186
    • /
    • 2005
  • We developed an upwind numerical formulation based on the eigenvalues of the approximate Jacobian matrix in order to solve the hyperbolic conservation laws governing the two-fluid two-phase flow models. We obtained eight analytic eigenvalues in the two dimensions that can be used for estimate of the wave speeds essential in constructing an upwind numerical method. Two-dimensional underwater cavitation in a flow past structural shapes or by underwater explosion can be solved using this method. We present quantitative prediction of cavitation for the water tunnel wall and airfoils that has both experimental data as well as numerical results by other numerical methods and models.

  • PDF