• Title/Summary/Keyword: 2-normed spaces

Search Result 101, Processing Time 0.019 seconds

GENERALIZED HYERS-ULAM STABILITY OF CUBIC TYPE FUNCTIONAL EQUATIONS IN NORMED SPACES

  • KIM, GWANG HUI;SHIN, HWAN-YONG
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.397-408
    • /
    • 2015
  • In this paper, we solve the Hyers-Ulam stability problem for the following cubic type functional equation $$f(rx+sy)+f(rx-sy)=rs^2f(x+y)+rs^2f(x-y)+2r(r^2-s^2)f(x)$$in quasi-Banach space and non-Archimedean space, where $r={\neq}{\pm}1,0$ and s are real numbers.

ERROR ANALYSIS OF FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM WITH NONLINEAR FREE BOUNDARY CONDITION

  • Lee H.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.223-235
    • /
    • 2006
  • By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations in $L_2,\;H^1$ and $H^2$ normed spaces.

A DISCRETE FINITE ELEMENT GALERKIN METHOD FOR A UNIDIMENSIONAL SINGLE-PHASE STEFAN PROBLEM

  • Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.165-181
    • /
    • 2004
  • Based on Landau-type transformation, a Stefan problem with non-linear free boundary condition is transformed into a system consisting of parabolic equation and the ordinary differential equations. Semidiscrete approximations are constructed. Optimal orders of convergence of semidiscrete approximation in $L_2$, $H^1$ and $H^2$ normed spaces are derived.

ERROR ESTIMATES FOR FULLY DISCRETE DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Yong;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.953-966
    • /
    • 2010
  • In this paper, we develop discontinuous Galerkin methods with penalty terms, namaly symmetric interior penalty Galerkin methods to solve nonlinear parabolic equations. By introducing an appropriate projection of u onto finite element spaces, we prove the optimal convergence of the fully discrete discontinuous Galerkin approximations in ${\ell}^2(L^2)$ normed space.

ORTHOGONALLY ADDITIVE AND ORTHOGONALLY QUADRATIC FUNCTIONAL EQUATION

  • Lee, Jung Rye;Lee, Sung Jin;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-21
    • /
    • 2013
  • Using the fixed point method, we prove the Ulam-Hyers stability of the orthogonally additive and orthogonally quadratic functional equation $$f(\frac{x}{2}+y)+f(\frac{x}{2}-y)+f(\frac{x}{2}+z)+f(\frac{x}{2}-z)=\frac{3}{2}f(x)-\frac{1}{2}f(-x)+f(y)+f(-y)+f(z)+f(-z)$$ (0.1) for all $x$, $y$, $z$ with $x{\bot}y$, in orthogonality Banach spaces and in non-Archimedean orthogonality Banach spaces.

ISHIKAWA AND MANN ITERATIVE PROCESSES WITH ERRORS FOR NONLINEAR $\Phi$-STRONGLY QUASI-ACCRETIVE MAPPINGS IN NORMED LINEAR SPACES

  • Zhou, H.Y.;Cho, Y.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1061-1073
    • /
    • 1999
  • Let X be a real normed linear space. Let T : D(T) ⊂ X \longrightarrow X be a uniformly continuous and ∮-strongly quasi-accretive mapping. Let {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} be two real sequences in [0, 1] satisfying the following conditions: (ⅰ) ${\alpha}$n \longrightarrow0, ${\beta}$n \longrightarrow0, as n \longrightarrow$\infty$ (ⅱ) {{{{ SUM from { { n}=0} to inf }}}} ${\alpha}$=$\infty$. Set Sx=x-Tx for all x $\in$D(T). Assume that {u}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and {v}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} are two sequences in D(T) satisfying {{{{ SUM from { { n}=0} to inf }}}}∥un∥<$\infty$ and vn\longrightarrow0 as n\longrightarrow$\infty$. Suppose that, for any given x0$\in$X, the Ishikawa type iteration sequence {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} with errors defined by (IS)1 xn+1=(1-${\alpha}$n)xn+${\alpha}$nSyn+un, yn=(1-${\beta}$n)x+${\beta}$nSxn+vn for all n=0, 1, 2 … is well-defined. we prove that {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} converges strongly to the unique zero of T if and only if {Syn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} is bounded. Several related results deal with iterative approximations of fixed points of ∮-hemicontractions by the ishikawa iteration with errors in a normed linear space. Certain conditions on the iterative parameters {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and t are also given which guarantee the strong convergence of the iteration processes.

  • PDF

ULTRAPRODUCTS OF LOCALLY CONVEX SPACES

  • Kang, Si-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.189-196
    • /
    • 1990
  • In this paper, we try to generalize ultraproducts in the category of locally convex spaces. To do so, we introduce D-ultracolimits. It is known [7] that the topology on a non-trivial ultraproduct in the category T $V^{ec}$ of topological vector spaces and continuous linear maps is trivial. To generalize the category Ba $n_{1}$ of Banach spaces and linear contractions, we introduce the category L $C_{1}$ of vector spaces endowed with families of semi-norms closed underfinite joints and linear contractions (see Definition 1.1) and its subcategory, L $C_{2}$ determined by Hausdorff objects of L $C_{1}$. It is shown that L $C_{1}$ contains the category LC of locally convex spaces and continuous linear maps as a coreflective subcategory and that L $C_{2}$ contains the category Nor $m_{1}$ of normed linear spaces and linear contractions as a coreflective subcategory. Thus L $C_{1}$ is a suitable category for the study of locally convex spaces. In L $C_{2}$, we introduce $l_{\infty}$(I. $E_{i}$ ) for a family ( $E_{i}$ )$_{i.mem.I}$ of objects in L $C_{2}$ and then for an ultrafilter u on I. we have a closed subspace $N_{u}$ . Using this, we construct ultraproducts in L $C_{2}$. Using the relationship between Nor $m_{1}$ and L $C_{2}$ and that between Nor $m_{1}$ and Ba $n_{1}$, we show thatour ultraproducts in Nor $m_{1}$ and Ba $n_{1}$ are exactly those in the literatures. For the terminology, we refer to [6] for the category theory and to [8] for ultraproducts in Ba $n_{1}$..

  • PDF

BOHR'S INEQUALITIES IN n-INNER PRODUCT SPACES

  • Cheung, W.S.;Cho, Y.S.;Pecaric, J.;Zhao, D.D.
    • The Pure and Applied Mathematics
    • /
    • v.14 no.2 s.36
    • /
    • pp.127-137
    • /
    • 2007
  • The classical Bohr's inequality states that $|z+w|^2{\leq}p|z|^2+q|w|^2$ for all $z,\;w{\in}\mathbb{C}$ and all p, q>1 with $\frac{1}{p}+\frac{1}{q}=1$. In this paper, Bohr's inequality is generalized to the setting of n-inner product spaces for all positive conjugate exponents $p,\;q{\in}\mathbb{R}$. In. In particular, the parallelogram law is recovered and an interesting operator inequality is obtained.

  • PDF

QUADRATIC (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES

  • Park, Junha;Jo, Younghun;Kim, Jaemin;Kim, Taekseung
    • The Pure and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.179-190
    • /
    • 2017
  • In this paper, we introduce and solve the following quadratic (${\rho}_1$, ${\rho}_2$)-functional inequality (0.1) $$N\left(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y),t\right){\leq}min\left(N({\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y)),t),\;N({\rho}_2(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)),t)\right)$$ in fuzzy normed spaces, where ${\rho}_1$ and ${\rho}_2$ are fixed nonzero real numbers with ${{\frac{1}{{4\left|{\rho}_1\right|}}+{{\frac{1}{{4\left|{\rho}_2\right|}}$ < 1, and f(0) = 0. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (${\rho}_1$, ${\rho}_2$)-functional inequality (0.1) in fuzzy Banach spaces.

BEST APPROXIMATION SETS IN LINEAR 2-NORMED SPACES

  • Elumalai, S.;Cho, Y.J.;Kim, S.S
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.619-629
    • /
    • 1997
  • In this paper, we give some properties of the sets $D_z(x_o, G)P_{G, z}(x)$. We also provide the relation between $P_{G, z}(x)$ and G$\hat{a}$teaux derivatives.

  • PDF