• Title/Summary/Keyword: 2-neighbor graph

Search Result 19, Processing Time 0.024 seconds

Graph-based modeling for protein function prediction (단백질 기능 예측을 위한 그래프 기반 모델링)

  • Hwang Doosung;Jung Jae-Young
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.209-214
    • /
    • 2005
  • The use of protein interaction data is highly reliable for predicting functions to proteins without function in proteomics study. The computational studies on protein function prediction are mostly based on the concept of guilt-by-association and utilize large-scale interaction map from revealed protein-protein interaction data. This study compares graph-based approaches such as neighbor-counting and $\chi^2-statistics$ methods using protein-protein interaction data and proposes an approach that is effective in analyzing large-scale protein interaction data. The proposed approach is also based protein interaction map but sequence similarity and heuristic knowledge to make prediction results more reliable. The test result of the proposed approach is given for KDD Cup 2001 competition data along with those of neighbor-counting and $\chi^2-statistics$ methods.

Topological Boundary Detection in Wireless Sensor Networks

  • Dinh, Thanh Le
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.145-150
    • /
    • 2009
  • The awareness of boundaries in wireless sensor networks has many benefits. The identification of boundaries is especially challenging since typical wireless sensor networks consist of low-capability nodes that are unaware of their geographic location. In this paper, we propose a simple, efficient algorithm to detect nodes that are near the boundary of the sensor field as well as near the boundaries of holes. Our algorithm relies purely on the connectivity information of the underlying communication graph and does not require any information on the location of nodes. We introduce the 2-neighbor graph concept, and then make use of it to identify nodes near boundaries. The results of our experiment show that our algorithm carries out the task of topological boundary detection correctly and efficiently.

A Generic Algorithm for k-Nearest Neighbor Graph Construction Based on Balanced Canopy Clustering (Balanced Canopy Clustering에 기반한 일반적 k-인접 이웃 그래프 생성 알고리즘)

  • Park, Youngki;Hwang, Heasoo;Lee, Sang-Goo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.4
    • /
    • pp.327-332
    • /
    • 2015
  • Constructing a k-nearest neighbor (k-NN) graph is a primitive operation in the field of recommender systems, information retrieval, data mining and machine learning. Although there have been many algorithms proposed for constructing a k-NN graph, either the existing approaches cannot be used for various types of similarity measures, or the performance of the approaches is decreased as the number of nodes or dimensions increases. In this paper, we present a novel algorithm for k-NN graph construction based on "balanced" canopy clustering. The experimental results show that irrespective of the number of nodes or dimensions, our algorithm is at least five times faster than the brute-force approach while retaining an accuracy of approximately 92%.

Detection of Landmark Spots for Spot Matching in 2DGE (2차원 전기영동 영상의 스팟 정합을 위한 Landmark 스팟쌍의 검출)

  • Han, Chan-Myeong;Suk, Soo-Young;Yoon, Young-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2011
  • Landmark Spots in 2D gel electrophoresis are used in many methods of 2DEG spot matching. Landmark Spots are obtained manually and it is a bottle neck in the entire protein analysis process. Automated landmark spots detection is a very crucial topic in processing a massive amount of 2DGE data. In this paper, Automated landmark spot detection is proposed using point pattern matching and graph theory. Neighbor spots are defined by a graph theory to use and only a centered spot and its neighbor spots are considered for spot matching. Normalized Hausdorff distance is introduced as a criterion for measuring degree of similarity. In the conclusion, the method proposed in this paper can get about 50% of the total spot pairs and the accuracy rate is almost 100%, which the requirements of landmark spots are fully satisfied.

Cycle Extendability of Torus Sub-Graphs in the Enhanced Pyramid Network (개선된 피라미드 네트워크에서 토러스 부그래프의 사이클 확장성)

  • Chang, Jung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1183-1193
    • /
    • 2010
  • The pyramid graph is well known in parallel processing as a interconnection network topology based on regular square mesh and tree architectures. The enhanced pyramid graph is an alternative architecture by exchanging mesh into the corresponding torus on the base for upgrading performance than the pyramid. In this paper, we adopt a strategy of classification into two disjoint groups of edges in regular square torus as a basic sub-graph constituting of each layer in the enhanced pyramid graph. Edge set in the torus graph is considered as two disjoint sub-sets called NPC(represents candidate edge for neighbor-parent) and SPC(represents candidate edge for shared-parent) whether the parents vertices adjacent to two end vertices of the corresponding edge have a relation of neighbor or sharing in the upper layer of the enhanced pyramid graph. In addition, we also introduce a notion of shrink graph to focus only on the NPC-edges by hiding SPC-edges within the shrunk super-vertex on the resulting shrink graph. In this paper, we analyze that the lower and upper bounds on the number of NPC-edges in a Hamiltonian cycle constructed on $2^n{\times}2^n$ torus is $2^{2n-2}$ and $3{\cdot}2^{2n-2}$ respectively. By expanding this result into the enhanced pyramid graph, we also prove that the maximum number of NPC-edges containable in a Hamiltonian cycle is $4^{n-1}$-2n+1 in the n-dimensional enhanced pyramid.

TREES WITH EQUAL STRONG ROMAN DOMINATION NUMBER AND ROMAN DOMINATION NUMBER

  • Chen, Xue-Gang;Sohn, Moo Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.31-44
    • /
    • 2019
  • A graph theoretical model called Roman domination in graphs originates from the historical background that any undefended place (with no legions) of the Roman Empire must be protected by a stronger neighbor place (having two legions). It is applicable to military and commercial decision-making problems. A Roman dominating function for a graph G = (V, E) is a function $f:V{\rightarrow}\{0,1,2\}$ such that every vertex v with f(v)=0 has at least a neighbor w in G for which f(w)=2. The Roman domination number of a graph is the minimum weight ${\sum}_{v{\in}V}\;f(v)$ of a Roman dominating function. In order to deal a problem of a Roman domination-type defensive strategy under multiple simultaneous attacks, ${\acute{A}}lvarez$-Ruiz et al. [1] initiated the study of a new parameter related to Roman dominating function, which is called strong Roman domination. ${\acute{A}}lvarez$-Ruiz et al. posed the following problem: Characterize the graphs G with equal strong Roman domination number and Roman domination number. In this paper, we construct a family of trees. We prove that for a tree, its strong Roman dominance number and Roman dominance number are equal if and only if the tree belongs to this family of trees.

Edge Property of 2n-square Meshes as a Base Graphs of Pyramid Interconnection Networks (피라미드 상호연결망의 기반 그래프로서의 2n-정방형 메쉬 그래프의 간선 특성)

  • Chang, Jung-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.582-591
    • /
    • 2009
  • The pyramid graph is an interconnection network topology based on regular square mesh and tree structures. In this paper, we adopt a strategy of classification into two disjoint groups of edges in regular square mesh as a base sub-graph constituting of each layer in the pyramid graph. Edge set in the mesh can be divided into two disjoint sub-sets called as NPC(represents candidate edge for neighbor-parent) and SPC(represents candidate edge for shared-parent) whether the parents vertices adjacent to two end vertices of the corresponding edge have a relation of neighbor or shared in the upper layer of pyramid graph. In addition, we also introduce a notion of shrink graph to focus only on the NPC-edges by hiding SPC-edges in the original graph within the shrunk super-vertex on the resulting graph. In this paper, we analyze that the lower and upper bound on the number of NPC-edges in a Hamiltonian cycle constructed on $2^n\times2^n$ mesh is $2^{2n-2}$ and $3*(2^{2n-2}-2^{n-1})$ respectively. By expanding this result into the pyramid graph, we also prove that the maximum number of NPC-edges containable in a Hamiltonian cycle is $4^{n-1}-3*2^{n-1}$-2n+7 in the n-dimensional pyramid.

Spatial Reuse Algorithm Using Interference Graph in Millimeter Wave Beamforming Systems

  • Jo, Ohyun;Yoon, Jungmin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.255-263
    • /
    • 2017
  • This paper proposes a graph-theatrical approach to optimize spatial reuse by adopting a technique that quantizes the channel information into single bit sub-messages. First, we introduce an interference graph to model the network topology. Based on the interference graph, the computational requirements of the algorithm that computes the optimal spatial reuse factor of each user are reduced to quasilinear time complexity, ideal for practical implementation. We perform a resource allocation procedure that can maximize the efficiency of spatial reuse. The proposed spatial reuse scheme provides advantages in beamforming systems, where in the interference with neighbor nodes can be mitigated by using directional beams. Based on results of system level measurements performed to illustrate the physical interference from practical millimeter wave wireless links, we conclude that the potential of the proposed algorithm is both feasible and promising.

An Improvement in K-NN Graph Construction using re-grouping with Locality Sensitive Hashing on MapReduce (MapReduce 환경에서 재그룹핑을 이용한 Locality Sensitive Hashing 기반의 K-Nearest Neighbor 그래프 생성 알고리즘의 개선)

  • Lee, Inhoe;Oh, Hyesung;Kim, Hyoung-Joo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.681-688
    • /
    • 2015
  • The k nearest neighbor (k-NN) graph construction is an important operation with many web-related applications, including collaborative filtering, similarity search, and many others in data mining and machine learning. Despite its many elegant properties, the brute force k-NN graph construction method has a computational complexity of $O(n^2)$, which is prohibitive for large scale data sets. Thus, (Key, Value)-based distributed framework, MapReduce, is gaining increasingly widespread use in Locality Sensitive Hashing which is efficient for high-dimension and sparse data. Based on the two-stage strategy, we engage the locality sensitive hashing technique to divide users into small subsets, and then calculate similarity between pairs in the small subsets using a brute force method on MapReduce. Specifically, generating a candidate group stage is important since brute-force calculation is performed in the following step. However, existing methods do not prevent large candidate groups. In this paper, we proposed an efficient algorithm for approximate k-NN graph construction by regrouping candidate groups. Experimental results show that our approach is more effective than existing methods in terms of graph accuracy and scan rate.

RAG-based Hierarchical Classification (RAG 기반 계층 분류 (2))

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • This study proposed an unsupervised image classification through the dendrogram of agglomerative clustering as a higher stage of image segmentation in image processing. The proposed algorithm is a hierarchical clustering which includes searching a set of MCSNP (Mutual Closest Spectral Neighbor Pairs) based on the data structures of RAG(Regional Adjacency Graph) defined on spectral space and Min-Heap. It also employes a multi-window system in spectral space to define the spectral adjacency. RAG is updated for the change due to merging using RNV (Regional Neighbor Vector). The proposed algorithm provides a dendrogram which is a graphical representation of data. The hierarchical relationship in clustering can be easily interpreted in the dendrogram. In this study, the proposed algorithm has been extensively evaluated using simulated images and applied to very large QuickBird imagery acquired over an area of Korean Peninsula. The results have shown it potentiality for the application of remotely-sensed imagery.