• 제목/요약/키워드: 2-methylthio ATP

검색결과 4건 처리시간 0.014초

돼지 심관상동맥의 이완작용에 대한 purinergic 신경의 효과 (Effects of purinergic nerve on relaxation of pig coronary artery)

  • 김주헌;심철수;전석철
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.533-540
    • /
    • 1997
  • To elucidate the effects of purinergic nerve on relaxation of pig coronary artery, the effects of ATP, 2-methylthio ATP and electrical perivascular nerve stimulation were investigated from physiograph on the isolated coronary artery of pig. The results btained were as follows; 1. The relaxative responses induced by perivascular nerve stimulation(20V, 0.5msec, 10sec) were the frequency(1~8Hz) dependent manner with phentolamine($10^{-5}M$) and atropine($10^{-6}M$) on isolated coronary artery of pig. 2. The relaxative responses induced. by adenosine($10^{-7}{\sim}5{\times}10^{-3}M$) or ATP($10^{-7}{\sim}5{\times}10^{-5}M$) on precontraction with histamine($10^{-5}M$) were the dose-dependent manner, but the contractile responses were often induced by ATP($10^{-4}M$ and $10^{-3}M$). 3. The relaxative responses induced by 2-methylthio ATP($2.5{\times}10^{-8}{\sim}2.5{\times}10^{-6}M$) on precontraction with histamine($10^{-5}M$) were the dose-dependent manner. 4. The relaxative response induced by 2-methylthio ATP($10^{-7}M$) on precontraction with histamine($10^{-5}M$) was completely blocked by the pretreatment with $P_{2Y}$-purinoceptor blocker, reactive blue 2($10^{-4}M$). 5. The neurogenic relaxative response induced by perivascular nerve stimulation(20V, 8Hz, 0.5msec, 10sec) was weakly inhibited by the pretreatment with ${\beta}$-adrenoceptor blocker, propranolol($10^{-5}M$) and blocked by the addition with $P_{2Y}$-purinoceptor blocker, reactive blue 2($10^{-4}M$). The results suggest that the purinergic nerve is innervated, and its relaxative response was mediated by $P_{2Y}$-purinoceptor on isolated coronary artery in pig.

  • PDF

Functional characterization of $P_{2X}/P_{2Y}$ receptor in isolated swine renal artery

  • Kim, Joo-heon;Jeon, Je-cheol;Lee, Sang-kil;Lee, Su-jin;Lee, Younggeon;Won, Jinyoung;Kang, Jae seon;Hong, Yonggeun
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.371-378
    • /
    • 2007
  • To understand the role of $PM_{2X}/P_{2Y}$ receptor in cortex region of kidney and renal artery, molecular and functional analysis of $PM_{2X}/P_{2Y}$ receptor by pharmacophysiological skill in conventional swine tissues were performed. In functional analysis of $P_{2Y}$ receptor for vascular relaxation, 2-methylthio adenosine triphosphate, a strong agonist of $P_{2Y}$ receptor, induced relaxation of noradrenaline (NA)-precontracted renal artery in a dose-dependent manner. Strikingly, relaxative effect of ATP, 2-msATP, agonists of $P_{2Y}$ receptor, abolished by treatment of reactive blue 2, a putative $P_{2Y}$ receptor antagonist. In contrast, no significant differences of gene encoding $PM_{2X}/P_{2Y}$ and protein expression in immortalized suprachiasmatic nucleus from brain, primary isolated vascular smooth muscle cells from renal artery of pigs and HEK293 from human embryonic kidney under with/without adenosine triphosphate were observed. Taken together, the relationship between molecular and functional characteristic of $PM_{2X}/P_{2Y}$ receptors in conventional pig should be considered that they are another important factor which regulate the kidney function in swine. Based on this study, we propose the purinergic receptor as well as adrenergic and cholinergic receptors is an essential component of the renal homeostasis.

Asymmetrical Distribution of P2Y Nucleotide Receptors in Rabbit Inner Medullary Collecting Duct Cells

  • Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권4호
    • /
    • pp.311-318
    • /
    • 2000
  • We cultured the rabbit inner medullary collecting duct (IMCD) cells as monolayers on collagen-coated membrane filters, and investigated distribution of the P2Y receptors by analyzing nucleotide-induced short circuit current $(I_{sc})$ responses. Exposure to different nucleotides of either the apical or basolateral surface of cell monolayers stimulated $I_{sc}.$ Dose-response relationship and cross-desensitization studies suggested that at least 3 distinct P2Y receptors are expressed asymmetrically on the apical and basolateral membranes. A $P2Y_2-like$ receptor, which responds to UTP and ATP, is expressed on both the apical and basolateral membranes. In addition, a uracil nucleotide receptor, which responds to UDP and UTP, but not ATP, is expressed predominantly on the apical membrane. In contrast, a $P2Y_1-like$ receptor, which responds to ADP and 2-methylthio-ATP, is expressed predominantly on the basolateral membrane. These nucleotides stimulated intracellular cAMP production with an asymmetrical profile, which was comparable to that in the stimulation of $I_{sc}.$ Our results suggest that the adenine and uracil nucleotides can interact with different P2Y nucleotide receptors that are expressed asymmetrically on the apical and basolateral membranes of the rabbit IMCD cells, and that both cAMP- and $Ca^{2+}-dependent$ signaling mechanisms underlie the stimulation of $I_{sc}$.

  • PDF

Mechanism of L-NAME-Resistant Endothelium-Dependent Relaxation Induced by Acetylcholine in Rabbit Renal Artery

  • Yeon, Dong-Soo;Ahn, Duck-Sun;Lee, Young-Ho;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.471-477
    • /
    • 2000
  • In the rabbit renal artery, acetylcholine $(ACh,\;1\;nM{\sim}10\;{\mu}M)$ induced endothelium-dependent relaxation of arterial rings precontracted with norepinephrine $(NE,\;1\;{\mu}M)$ in a dose-dependent manner. $N^G-nitro- L-arginine$ (L-NAME, 0.1 mM), an inhibitor of NO synthase, or ODQ $(1\;{\mu}M),$ a soluble guanylate cyclase inhibitor, partially inhibited the ACh-induced endothelium-dependent relaxation. The ACh-induced relaxation was abolished in the presence of 25 mM KCl and L-NAME. The cytochrome P450 inhibitors, 7- ethoxyresorufin $(7-ER,\;10\;{\mu}M),$ miconazole $(10\;{\mu}M),$ or 17-octadecynoic acid $(17-ODYA,\;10\;{\mu}M),$ failed to inhibit the ACh-induced relaxation in the presence of L-NAME. 11,12-epoxyeicosatrienoic acid $(11,12-EET,\;10\;{\mu}M)$ had no relaxant effect. The ACh-induced relaxation observed in the presence of L-NAME was significantly reduced by a combination of iberiotoxin $(0.3\;{\mu}M)$ and apamin $(1\;{\mu}M),$ and almost completely blocked by 4-aminopyridine (5 mM). The ACh-induced relaxation was antagonized by $P_{2Y}$ receptor antagonist, cibacron blue $(10\;and\;100\;{\mu}M),$ in a dose-dependent manner. Furthermore, 2-methylthio-ATP (2MeSATP), a potent $P_{2Y}$ agonist, induced the endothelium-dependent relaxation, and this relaxation was markedly reduced by either the combination of iberiotoxin and apamin or by cibacron blue. In conclusion, in renal arteries isolated from rabbit, ACh produced non-NO relaxation that is mediated by an EDHF. The results also suggest that ACh may activate the release of ATP from endothelial cells, which in turn activates $P_{2Y}$ receptor on the endothelial cells. Activation of endothelial $P_{2Y}$ receptors induces a release of EDHF resulting in a vasorelaxation via a mechanism that involves activation of both the voltage-gated $K^+$ channels and the $Ca^{2+}-activated\;K^+\;channels$. The results further suggest that EDHF does not appear to be a cytochrome P450 metabolite.

  • PDF