• Title/Summary/Keyword: 2-dimensional transformation

Search Result 264, Processing Time 0.025 seconds

Quincunx Sampling Method for Performance Improvement of 2D High-Density Wavelet Transformation (2차원 고밀도 이산 웨이브렛 변환의 성능 향상을 위한 Quincunx 표본화 기법)

  • Lim, Joong-Hee;Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.179-191
    • /
    • 2013
  • The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously and good frequency property than the separable two dimensional schemes. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs. This paper proposed the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. Proposed wavelet transformation can service good performance in image processing fields.

Study on Optimization of Look-Up Table to Reduce Error of Three-dimensional Interpolation (3차원 보간 오차를 개선하기 위한 룩업 테이블의 최적화에 관한 연구)

  • Kim, Joo-Young;Lee, Hak-Sung;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.12-18
    • /
    • 2007
  • The three dimensional interpolation is widely used for many kinds of color signal transformation such as real-time color gamut mapping. Given input color signal, the output color signal is approximately calculated by the interpolation with the input point and extracted values from a lookup table which is constructed by storing the values of transformation at regularly packed sample points. Apparently, errors of the interpolated approximation heavily depend on the selection of the lookup table. In this paper, a least square method is applied to assigning values of the lookup table with fixed size in order to minimize error of three-dimensional interpolation. The experimental result shows that the proposed method has better interpolation performance.

Vibration Analysis of Multi Cracked Nonuniform Nanobeam by using Differential Transformation Method (미분변환법을 이용한 다중 크랙을 갖는 비균일 나노빔의 진동해석)

  • Shin, Young-Jae;Park, Sung-Hyun;Kim, Jin-Hong;Yoo, Yeong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.93-101
    • /
    • 2016
  • In this study, the governing equations of motion for multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium were derived. DTM(differential transformation method) was applied to vibration analysis of multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium. The non-dimensional natural frequencies of this nanobeam were obtained for eoe, crack stiffness and elastic medium stiffness with various boundary conditions. The results obtained by this method was compared with previous works and showed the close agreement between two methods. The important conclusions obtained by this study are as follows : 1. As the length of nanobeam is shorter, the effect of scale coefficient is greater. 2. The locations of crack change non-dimensional natural frequency, In the case of fixed-fixed ends, the non-dimensional natural frequency is the biggest in the first crack location of 0.6L of nanobeam length, and the smallest in both ends. In the case of fixed-free ends, the closer the location of first crack go tho the free end, the bigger the non-dimensional natural frequency. 3. As the stiffness of crack is greater, the non-dimensional natural frequency is smaller, And the effect of crack stiffness is similar on both fixed-free ends and fixed-fixed ends. 4. The bigger the stiffness of elastic medium, the greater the non - dimensional natural frequency.

Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method

  • Wu, L.H.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.267-288
    • /
    • 2012
  • Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic edge supports is presented by using the powerful pb-2 Ritz method and Reddy's third order shear deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken to be the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. A lot of numerical results for reasonable natural frequency parameters of quadrilateral plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.

Two Dimensional Added Inertia Coefficients for Straight Framed Hull Forms in Horizontal and Torsional Vibration. (직선늑골선형(直線肋骨船型)의 수평(水平) 및 비틂진동(振動)에 있어서의 2차원적(次元的) 부가관성계수(附加慣性係數))

  • S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.3-12
    • /
    • 1975
  • As for two dimensional added mass coefficients for straight framed hull forms in a free surface of an ideal fluid, theoretical calculations by F.M. Lewis, vertical, K. Wendel, J.H. Hwang, and etc. are available; vertical modes of rectangular and triangle sections by Lewis, vertical, horizontal and torsional models of rectangular and triangle section by Wendel, and systematical calculations for vertical modes of single chine forms by Hwang. In this paper, employing the conformal transformation by which a unit circle and its exterior region can conformally mapped to a polygon and its exterior region, the author calculated two dimensional added inertia coefficients systematically for straight framed sections with single chine in horizontal and torsional modes of vibrations. As the results, it was found that sloping side angle is an important factor measuring the magnitude of two dimensional added inertia coefficient for a set of given values of the sectional area coefficient and the beam-draft ratio. To grasp it cleary in physical sense, pressure distributions are investigated for some typical section contours. The numerical results are presented graphically in the form of two dimensional added sectional area coefficients with beam-draft ratios and sloping side angles as parameters, so that the data may conveniently utilized for estimation of the added inertia coefficients based on a three parameter technique.

  • PDF

A Study on the Rainfall Generation (In Two-dimensional Random Storm Fields) (강우의 모의발생에 관한 연구 (2차원 무작위 호우장에서))

  • Lee, Jea Hyoung;Soun, Jung Ho;Hwang, Man Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.109-116
    • /
    • 1991
  • In recent years, hydrologists have been interested in the radial spectrum and its estimation in two dimensional storm field to construct simulation model of the rainfall. This paper deals with the problem of transformation from the spectrum or isotropic covariance function to two dimensional random field. The extended turning band method for the generation of random field is applied to the problem using the line generation method of one dimensional stochastic process by G.Matheron. Examples of this generation is chosen in the random components of the multidimensional rainfall model suggested by Bras and are given with a comparison between theoretical and sample statistics. In this numerical experiments it is observed that first and second order statistics can be conserved. Also the example of moving storm simulation through Bras model is presented with the appropriate parameters and sample size.

  • PDF

Hybrid Element Model for Wave Transformation Analysis (파랑 변형 해석을 위한 복합 요소 모형)

  • 정태화;박우선;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.159-166
    • /
    • 2003
  • In this study, we develop a finite element model to directly solve the Laplace equation while keeping the same computational efficiency as the models based on the extended mild-slope equation which has been widely used for calculation of wave transformation in shallow water. For this, the computational domain is discretized into finite elements with a single layer in the vertical direction. The velocity potential in the element is then expressed in terms of the potentials at the nodes located at water surface, and the Galerkin method is used to construct the numerical model. A common shape function is adopted in horizontal direction, and the cosine hyperbolic function in vertical direction, which describes the vertical behavior of progressive waves. The model was developed for vertical two-dimensional problems. In order to verify the developed model, it is applied to vertical two-dimensional problems of wave reflection and transmission. It is shown that the present finite element model is comparable to the models based on extended mild-slope equations in both computational efficiency and accuracy.

An Application of 2-D BEM with Laplace Transformation to Impact Crack Analysis (균열의 충격해석에 대한 Laplace 변환 2차원 경계요소법의 응용)

  • 조상봉;김태규;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.883-890
    • /
    • 1992
  • Analysis of dynamic or impact problems is very important in engineering fields such as airplanes and automobiles. In the present study, two-dimensional elastodynamic BEM program with Laplace transformation is developed to analyze dynamic or impact problems. Accuracy and efficiency of the BEM program are tested by making the comparision of impact analysis of some models with other's published results. The BEM developed is applied to the impact crack problem and the dynamic stress intensity factors of some impact cracks is obtained by the displacement extrapolation method. It is confirmed to be possible to analyze impact problems accurately with only a little elements in simple models. And also it is found to be careful to use the singular element usually using in static crack problems because that the elastodynamic fundamental solution usually using in static crack problems because that the elastodynamic fundamental solution has more sensitive singularity than the static fundamental solution and to determine the boundary conditions in dynamic problems.

Systematic Approach for Predicting Irregular Wave Transformation (불규칙파랑의 계통적 취급수법)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • It can be assumed that the ocean waves consist of many independent pure sinusoidal components which progress in arbitrary directions. To analyze irregular sea waves, both the spectrum method and the individual wave method have been used. The spectral approach is valid in the region where the water depth is deep and the linear property of velocity distribution is predominent, while the individual wave analysis method in the region where the water depth is shallow and the wave nonlinearity is significant. Therefore, to investigate the irregular wave transformation from the deep water to the shallow water region, it is necessary to relate the frequency spectrum which is estimated by the spectrum analysis method to the i oint probability distribution of wave height, period and direction affected by the boundary condition of the individual wave analysis method. It also becomes important to define the region where both methods can be applied. This study is a part of investigation to establish a systematic approach for analyzing the irregular wave transformation. The region where the spectral approach can be applied is discussed by earring out the experiments on the irregular wave transformation in the two-dimensional wave tank together with the numerical simulation. The applicability of the individual wave analysis method for predicting irregular wave transformation including wave shoaling and breaking and the relation between frequency spectrum and joint probability distribution of wave height and period are also investigated through the laboratory experiment and numerical simualtion.

  • PDF

Improved Face Recognition based on 2D-LDA using Weighted Covariance Scatter (가중치가 적용된 공분산을 이용한 2D-LDA 기반의 얼굴인식)

  • Lee, Seokjin;Oh, Chimin;Lee, Chilwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1446-1452
    • /
    • 2014
  • Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.