• Title/Summary/Keyword: 2-dimensional scanner

Search Result 183, Processing Time 0.028 seconds

Three-dimensional evaluation on the repeatability and reproducibility of dental scanner-based digital models (치과용 스캐너로 채득한 디지털 모형의 반복성 및 재현성에 관한 3차원적 평가)

  • Lee, Gyeong-Tak;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.34 no.3
    • /
    • pp.213-220
    • /
    • 2012
  • Purpose: The aim of this study was to determine the repeatability and reproducibility of two dental scanners. Methods: The master die and the stone replicas(Kavo, Germany) were digitized in touch-probe scanner(Incise, Renishaw, UK), white light scanner(Identica, Medit, Korea) to create 3-dimensional surface-models. The number of points in the point clouds from each reading were calculated and used as the CAD reference model(CRM). Discrepancies between the points in the 3-dimensional surface models and the corresponding CRM were measured by a matching-software(Power-Inspect R2, Delcam Plc, UK). The t-student test for one samples were used for statistical analysis. Results: The reproducibility of both scanner was within $3{\mu}m$, based on mean value. The mean value between measurements made directly on the touch probe scanner digital models and those made on the white light scanner digital models was $2.20-2.90{\mu}m$, and was statistically significant(P<0.05). Conclusion: With respect to adequate data acquisition, the reproducibility of dental scanner differs. Three-dimensional analysis can be applied to differential quality analysis of the manufacturing process as well as to evaluation of different analysis methods.

Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner (최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘 설계)

  • Ma, Chang-Min;Yoo, Sung-Hoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.748-753
    • /
    • 2012
  • In this paper, Face recognition algorithm is designed based on optimized pRBFNNs pattern classifier using three-dimensional scanner. Generally two-dimensional image-based face recognition system enables us to extract the facial features using gray-level of images. The environmental variation parameters such as natural sunlight, artificial light and face pose lead to the deterioration of the performance of the system. In this paper, the proposed face recognition algorithm is designed by using three-dimensional scanner to overcome the drawback of two-dimensional face recognition system. First face shape is scanned using three-dimensional scanner and then the pose of scanned face is converted to front image through pose compensation process. Secondly, data with face depth is extracted using point signature method. Finally, the recognition performance is confirmed by using the optimized pRBFNNs for solving high-dimensional pattern recognition problems.

Comparison of 2-dimensional marginal and internal fitness for the monolithic zirconia prosthesis using intraoral scanner and extraoral scanner: in vitro (Extraoral scanner와 intraoral scanner를 이용하여 제작된 zirconia crown의 2차원 변연 및 내면 적합도 비교: in vitro)

  • Lee, Tae-Hee;Lee, Ha-Bin;Kim, Ji-hwan
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.187-193
    • /
    • 2019
  • Purpose: The purpose of this study was to compare two-dimensional fitness of the monolithic zirconia prosthesis by using different type of scanner. Methods: No. 26 abutment tooth of FDI system was selected for the study. Using the extraoral scanner and intraoral scanner, the abutment tooth was scanned 10 times and the scanned files were saved as STL files. CAD/CAM system was used to produce the monolithic zirconia prosthesis. marginal and internal gap of the monolithic zirconia prosthesis were measured by digital microscope(x160) and applied silicone replica technique was applied. t-test, a statistical software, was used to perform data analysis. Results: Marginal gap $mean{\pm}SD$ of the monolithic zirconia prosthesis was $33{\pm}7.5{\mu}m$ with extra oral scanner and $34.7{\pm}11.1{\mu}m$ with intraoral scanner. axial gap mean was $40.5{\pm}3.5{\mu}m$ with extra oral scanner and $44.6{\pm}11.6{\mu}m$ with intraoral scanner. occlusal gap mean was $110.1{\pm}25.4{\mu}m$ with extra oral scanner and $64{\pm}9.7{\mu}m$ with intraoral scanner. Conclusion: In this study, fabricating zirconia prosthesis with different type of scanner was clinically applicable.

A Study on Development of 3D Outsole Profile Scanner for Footwear Bonding Automation

  • Lho, Tae-Jung;Park, Pil-Gyu;Suh, Jong-Chul;Park, Dong-Joo;Ahn, Hee-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.131.3-131
    • /
    • 2001
  • A 2-dimensional scanner have been generally used for an office, but 3-dimensional one was seldom used in industry. A footwear bonding process has been operated manually by the skilled operators, but it is needed to be operated automatically. So we developed an automatic outsole profile scanner, which consists of PC, CCD camera, laser beam diode and moving mechanism, to scan automatically the 3-dimensional profile of outsole inner face to be bonded. Here the developed algorithm makes 2D image into 3D outsole profile. This profile will be used enough to bond automatically the outsole to something like leather or clothes.

  • PDF

The Study of Pain-Increased Factors on Cervical and Shoulder Pain by 3 Dimensional Moire Scanner (3차원 체형 측정기를 통한 경.견부 통증요인 분석)

  • Yang, Hoe-Song;Heo, Ja-Eun;Kim, Bo-Young;Seo, Dong-Yong;An, Chang-Heon;Yang, Hun-Kyung;Jeong, Chan-Ju;Lee, Hyoung-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.12 no.3
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to find out factors(shoulder level, acromion-occipital length, spine alignment, spine-scapula inferior angle length) of pain of neck & shoulder by 3 Dimensional Moire Scanner. 50 female student s aged 20 to 25 years old participated who lived in Sun-cheon si Jeonnam. They were examined with three measurement methods(Visual Analogue Scale : VAS, Algometer, 3 Dimensional Moire Scanner(IBS-2000). According to the results of multiple regression analysis. 1) There was a significant difference with shoulder level and spine-scapula inferior angle based on VAS. 2) There was a significant difference with shoulder level based of Algometer measurement value in Rhomboid muscles.

  • PDF

MRI의 현황과 전망

  • 전희국
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.125-130
    • /
    • 1988
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of $0.1^{\circ}C$ under the spatial resolution of lmrad, the image matrix size of $256 {\times} 240, $ and tile imaging time of 4 seconds.

  • PDF

2D Grid Map Compensation using an ICP Algorithm (ICP 알고리즘을 이용한 2차원 격자지도 보정)

  • Lee, Dong-Ju;Hwang, Yu-Seop;Yun, Yeol-Min;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1170-1174
    • /
    • 2014
  • This paper suggests using the ICP (Iterative Closet Point) algorithm to compensate a two-dimensional map. ICP algorithm is a typical algorithm method using matching distance data. When building a two-dimensional map, using data through the value of a laser scanner, it occurred warping and distortion of a two-dimensional map because of the difference of distance from the value of the sensor. It uses the ICP algorithm in order to reduce any error of line. It validated the proposed method through experiment involving matching a two-dimensional map based reference data and measured the two-dimensional map.

Two Dimensional Atomic Force Microscope (서브나노급 정밀도의 2 차원 원자현미경 개발)

  • Lee, Dong-Yeon;Gweon, Dae-Gab
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1778-1783
    • /
    • 2008
  • A compact and two-dimensional atomic force microscope (AFM) using an orthogonal sample scanner, a calibrated homodyne laser interferometer and a commercial AFM head was developed for use in the nanometrology field. The x and y position of the sample with respect to the tip are acquired by using the laser interferometer in the open-loop state, when each z data point of the AFM head is taken. The sample scanner which has a motion amplifying mechanism was designed to move a sample up to $100{\times}100{\mu}m^2$ in orthogonal way, which means less crosstalk between axes. Moreover, the rotational errors between axes are measured to ensure the accuracy of the calibrated AFM within the full scanning range. The conventional homodyne laser interferometer was used to measure the x and y displacements of the sample and compensated via an X-ray interferometer to reduce the nonlinearity of the optical interferometer. The repeatability of the calibrated AFM was measured to sub-nm within a few hundred nm scanning range.

  • PDF

A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction

  • Anh, Ji-won;Park, Ji-Man;Chun, Youn-Sic;Kim, Miae;Kim, Minji
    • The korean journal of orthodontics
    • /
    • v.46 no.1
    • /
    • pp.3-12
    • /
    • 2016
  • Objective: The purpose of this study was to compare the precision of three-dimensional (3D) images acquired using iTero$^{(R)}$(Align Technology Inc., San Jose, CA, USA) and Trios$^{(R)}$(3Shape Dental Systems, Copenhagen, Denmark) digital intraoral scanners, and to evaluate the effects of the severity of tooth irregularities and scanning sequence on precision. Methods: Dental arch models were fabricated with differing degrees of tooth irregularity and divided into 2 groups based on scanning sequence. To assess their precision, images were superimposed and an optimized superimposition algorithm was employed to measure any 3D deviation. The t-test, paired t-test, and one-way ANOVA were performed (p < 0.05) for statistical analysis. Results: The iTero$^{(R)}$ and Trios$^{(R)}$ systems showed no statistically significant difference in precision among models with differing degrees of tooth irregularity. However, there were statistically significant differences in the precision of the 2 scanners when the starting points of scanning were different. The iTero$^{(R)}$ scanner (mean deviation, $29.84{\pm}12.08{\mu}m$) proved to be less precise than the Trios$^{(R)}$ scanner ($22.17{\pm}4.47{\mu}m$). Conclusions: The precision of 3D images differed according to the degree of tooth irregularity, scanning sequence, and scanner type. However, from a clinical standpoint, both scanners were highly accurate regardless of the degree of tooth irregularity.

Validity of Three-dimensional Facial Scan Taken with Facial Scanner and Digital Photo Wrapping on the Cone-beam Computed Tomography: Comparison of Soft Tissue Parameters

  • Aljawad, Hussein;Lee, Kyungmin Clara
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • Purpose: The purpose of the study was to assess the validity of three-dimensional (3D) facial scan taken with facial scanner and digital photo wrapping on the cone-beam computed tomography (CBCT). Materials and Methods: Twenty-five patients had their CBCT scan, two-dimensional (2D) standardized frontal photographs and 3D facial scan obtained on the same day. The facial scans were taken with a facial scanner in an upright position. The 2D standardized frontal photographs were taken at a fixed distance from patients using a camera fixed to a cephalometric apparatus. The 2D integrated facial models were created using digital photo wrapping of frontal photographs on the corresponding CBCT images. The 3D integrated facial models were created using the integration process of 3D facial scans on the CBCT images. On the integrated facial models, sixteen soft tissue landmarks were identified, and the vertical, horizontal, oblique and angular distances between soft tissue landmarks were compared among the 2D facial models and 3D facial models, and CBCT images. Result: The results showed no significant differences of linear and angular measurements among CBCT images, 2D and 3D facial models except for Se-Sn vertical linear measurement which showed significant difference for the 3D facial models. The Bland-Altman plots showed that all measurements were within the limit of agreement. For 3D facial model, all Bland-Altman plots showed that systematic bias was less than 2.0 mm and 2.0° except for Se-Sn linear vertical measurement. For 2D facial model, the Bland-Altman plots of 6 out of 11 of the angular measurements showed systematic bias of more than 2.0°. Conclusion: The facial scan taken with facial scanner showed a clinically acceptable performance. The digital 2D photo wrapping has limitations in clinical use compared to 3D facial scans.