• Title/Summary/Keyword: 2-deoxy-D-glucose

Search Result 105, Processing Time 0.112 seconds

Diagnostic Efficacy of FDG-PET in Solitary Pulmonary Nodule (고립성폐결절에서 FDG-PET의 진단적 유용성)

  • Kim, Woo-Jin;Yim, Jae-Joon;Yoo, Chul-Gyu;Kim, Young-Whan;Shim, Young-Soo;Han, Sung-Koo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1263-1270
    • /
    • 1997
  • Background : Differentiation of malignity and benignity is crucial for management of solitary pulmonary nodule(SPN). Clinical parameters such as patient's age, nodule size, smoking history, doubling time, typical calcification in X-ray and CT findings have been reported as helpful in this purpose. However, in most cases, these parameters are not conclusive. Glucose metabolism is increased in cancer tissues including lung cancer tissues. After uptake of 2-[F-18]-fluoro-2-deoxy-D-glucose(FDG), the glucose analogue, by cancer cell, FDG is trapped in the cell without further metabolism after phosphorylation. Thus, hypermetabolic focus in FDG-positron emission tomography (PET) imaging suggest malignancy. We evaluated the diagnostic efficacy of FDG-PET imaging in distinguishing malignant and benign SPN. Methods : We evaluated 28 patients with SPN from Jan. 1995 to Jan. 1997. CT scan of chest and whole-body FDG-PET imaging were performed in all patients. Histologic diagnosis was confirmed by transthoracic fine needle aspiration and biopsy, bronchoscopic biopsy and open thoracotomy. Results : Of the 28 SPN's, 22 nodules were malignant and 6 nodules were benign. FDG-PET imaging diagnosed all malignant nodules correctly as positive, and diagnosed 4 of 6 benign nodules correctly as negative. One tuberculous granuloma and one aspergilloma showed hypennetabolic focus and were diagnosed falsely positve with FDG-PET imaging. In the diagnosis of SPN with FDG-PET, sensitivity and specificity were 100% and 66.7%, positive predictive value and negative predictive value were 92% and 100%. Conclusion : FDG-PET imaging is highly useful noninvasive diagnostic tool in distinguishing between malignant SPN and benign SPN.

  • PDF

Analysis on the association between EEG and 2-deoxy-2-[18F]-D-glucose (FDG)-PET findings in children with epilepsy (소아 간질 환아에서 뇌파와 PET과의 연관성에 대한 분석)

  • Hur, Yun Jung;Lee, Joon Soo;Lee, Jong Doo;Kim, Heung Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.3
    • /
    • pp.286-292
    • /
    • 2008
  • Purpose : We performed EEG and PET on children with epilepsy concomitantly in order to evaluate the effects of epileptiform and non-epileptiform discharge of EEG on glucose metabolism. Methods : Seventy three children with epilepsy who had PET and EEG simultaneously were included in our study. The subjects were classified in two ways: (1) based on the frequency of epileptiform discharge and (2) the severity of non-epileptiform discharge. We evaluated the clinical aspects of their seizures, the severity of focal slow waves during the interictal period with the frequency of spikes or sharp waves in order to compare with the PET results. Results : The subjects were divided by the frequency of epileptiform discharge, with 13 in the no/rare group, 7 in the occasional group, and 53 children in the frequent group. The concordant rates with PET in each group were 0%, 42.9%, and 67.9%, respectively, showing high correlations with the frequency of epileptiform discharge (P<0.05, r=0.491). The subjects as divided by the severity of non-epileptiform discharge were 15 in the no group, 25 in the infrequent group, 17 in the intermediate group, and 16 in the continuous group. The concurrence rates with PET for each group were 13.3%, 52.0%, 64.7%, and 68.8%, respectively, also showing a high correlation with the severity of non-epileptiform discharge (P<0.05, r= 0.365). Conclusion : Epileptiform discharge and non-epileptiform discharge in EEG showed a certain association with hypometabolism in PET. We recommend EEG to reduce false lateralization and to localize lesions in cases of high frequency and severity.

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

F-18-FDG Whole Body Scan using Gamma Camera equipped with Ultra High Energy Collimator in Cancer Patients: Comparison with FDG Coincidence PET (종양 환자에서 초고에너지(511 keV) 조준기를 이용한 전신 F-18-FDG 평면 영상: Coincidence 감마카메라 단층 촬영 영상과의 비교)

  • Pai, Moon-Sun;Park, Chan-H.;Joh, Chul-Woo;Yoon, Seok-Nam;Yang, Seung-Dae;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 1999
  • Purpose: The aim of this study is to demonstrate the feasibility of 2-[fluorine-18] fluoro-2-deoxy-D-glucose (F-18-FDG) whole body scan (FDG W/B Scan) using dual-head gamma camera equipped with ultra high energy collimator in patients with various cancers, and compare the results with those of coincidence imaging. Materials and Methods: Phantom studies of planar imaging with ultra high energy and coincidence tomography (FDG CoDe PET) were performed. Fourteen patients with known or suspected malignancy were examined. F-18-FDG whole body scan was performed using dual-head gamma camera with high energy (511 keV) collimators and regional FDG CoDe PET immediately followed it Radiological, clinical follow up and histologic results were correlated with F-18-FDG findings. Results: Planar phantom study showed 13.1 mm spatial resolution at 10 cm with a sensitivity of 2638 cpm/MBq/ml. In coincidence PET, spatial resolution was 7.49 mm and sensitivity was 5351 cpm/MBq/ml. Eight out of 14 patients showed hypermetabolic sites in primary or metastatic tumors in FDG CoDe PET. The lesions showing no hypermetabolic uptake of FDG in both methods were all less than 1 cm except one lesion of 2 cm sized metastatic lymph node. The metastatic lymph nodes of positive FDG uptake were more than 1.5 cm in size or conglomerated lesions of lymph nodes less than 1cm in size. FDG W/B scan showed similar results but had additional false positive and false negative cases. FDG W/B scan could not visualize liver metastasis in one case that showed multiple metastatic sites in FDG CoDe PET. Conclusion: FDG W/B scan with specially designed collimators depicted some cancers and their metastatic sites, although it had a limitation in image quality compared to that of FDG CoDe PET. This study suggests that F-18-FDG positron imaging using dual-head gamma camera is feasible in oncology and helpful if it should be more available by regional distribution of FDG.

  • PDF

A Pilot Study for the Feasibility of F-18 FLT-PET in Locally Advanced Breast Cancer: Comparison with F-18 FDG-PET (국소진행성 유방암에서 F-18 FLT-PET 적용 가능성에 대한 예비 연구: F-18 FDG-PET와 비교)

  • Hyuen, Lee-Jai;Kim, Euy-Nyong;Hong, Il-Ki;Ahn, Jin-Hee;Kim, Sung-Bae;Ahn, Sei-Hyun;Gong, Gyung-Yup;Kim, Jae-Seung;Oh, Seung-Jun;Moon, Dae-Hyuk;Ryu, Jin-Sook
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.29-38
    • /
    • 2008
  • Purpose: The aim of this study was to investigate the feasibility of 3 ' -[F-18]fluoro-3 ' -deoxythymidine positron emission tomography(FLT-PET) for the detection of locally advanced breast cancer and to compare the degree of FLT and 2' -deoxy-2 ' -[F-18]fluoro-d-glucose(FDG) uptake in primary tumor, lymph nodes and other normal organs. Material & Methods: The study subjects consisted of 22 female patients (mean age; $42{\pm}6$ years) with biopsy-confirmed infiltrating ductal carcinoma between Aug 2005 and Nov 2006. We performed conventional imaging workup, FDG-PET and FLT PET/CT. Average tumor size measured by MRI was $7.2{\pm}3.4$ cm. With visual analysis, Tumor and Lymph node uptakes of FLT and FDG were determined by calculation of standardized uptake value (SUV) and tumor to background (TB) ratio. We compared FLT tumor uptake with FDG tumor uptake. We also investigated the correlation between FLT tumor uptake and FDG tumor uptake and the concordant rate with lymph node uptakes of FLT and FDG. FLT and FDG uptakes of bone marrow and liver were measured to compare the biodistribution of each other. Results: All tumor lesions were visually detected in both FLT-PET and FDG-PET. There was no significant correlation between maximal tumor size by MRI and SUVmax of FLT-PET or FDG-PET (p>0.05). SUVmax and $$SUV_{75} (average SUV within volume of interest using 75% isocontour) of FLT-PET were significantly lower than those of FDG-PET in primary tumor (SUVmax; $6.3{\pm}5.2\;vs\;8.3{\pm}4.9$, p=0.02 /$SUV_{75};\;5.3{\pm}4.3\;vs\;6.9{\pm}4.2$, p=0.02). There is significant moderate correlation between uptake of FLT and FDG in primary tumor (SUVmax; rho=0.450, p=0.04 / SUV75; rho=0.472, p=0.03). But, TB ratio of FLT-PET was higher than that of FDG-PET($11.7{\pm}7.7\;vs\;6.3{\pm}3.8$, p=0.001). The concordant rate between FLT and FDG uptake of lymph node was reasonably good (33/34). The FLT SUVs of liver and bone marrow were $4.2{\pm}1.2\;and\;8.3{\pm}4.9$. The FDG SUVs of liver and bone marrow were $1.8{\pm}0.4\;and\;1.6{\pm}0.4$. Conclusion: The uptakes of FLT were lower than those of FDG, but all patients of this study revealed good FLT uptakes of tumor and lymph node. Because FLT-PET revealed high TB ratio and concordant rate with lymph node uptakes of FDG-PET, FLT-PET could be a useful diagnostic tool in locally advanced breast cancer. But, physiological uptake and individual variation of FLT in bone marrow and liver will limit the diagnosis of bone and liver metastases.