• Title/Summary/Keyword: 2-d numerical model

Search Result 1,336, Processing Time 0.032 seconds

Wildfire Risk Index Using NWP and Satellite Data: Its Development and Application to 2019 Kangwon Wildfires (기상예보모델자료와 위성자료를 이용한 산불위험지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Kim, Yeong-Ho;Kong, In-Hak;Chung, Chu-Yong;Shin, Inchul;Cheong, Seonghoon;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.337-342
    • /
    • 2019
  • This letter describes the development of WRI (Wildfire Risk Index) using GDAPS (Global Data Assimilation and Prediction System) and satellite data, and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. We made sure that the proposed WRI represented the change of wildfire risk of around March 19 and April 4 very well. Our approach can be a viable option for wildfire risk monitoring, and future works will be necessary for the utilization of GK-2A products and the coupling with the wildfire prediction model of the Korea Forest Service.

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Evaluation of Taste in the Patients with Recurrent Aphthous Ulceration by Electrogustometer (전기미각측정기를 이용한 재발성 아프타성 궤양 환자의 미각평가)

  • Jun, Jin-Yong;Ahn, Yong-Woo;Ko, Myung-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The purpose of this study was to investigate whether there were any changes in taste sensitivity with recurrent aphthous ulceration. Nintyseven subjects(25 males and 72 females) were included for the study and they were categorized into 2 groups(recurrent aphthous ulceration 27 persons, control 70 persons), recurrent aphthous ulceration group was investigated in the department of Oral Medicine, College of Dentistry, Pusan National University from April, 2005 to August, 2006 and control group was investigated in the clinic at Incheon city from June, 2006 to August, 2006. The electrical taste thresholds were measured using an electrogustometer of the 4 different sites(tongue tip, tongue lateral, circumvallate papilla and soft palate) in oral cavity. The results were as follows ; 1. The electrical taste threshold showed significant lower in the RAU group. 2. The electrical taste threshold showed significant lower in female group, and showed significant lower except soft palate in male group of the RAU group. 3. The electrical taste threshold showed a tendency to increase in all site of the multiple RAU group, but there were no significant differences. 4. The electrical taste threshold showed a tendency to increase in tongue lateral of the acute RAU group, and showed a tendency to increase in tongue tip, circumvallate papilla, soft palate of the chronic RAU group. 5. After treatment, electrical taste threshold was significant increase than initial visit in the RAU group. 6. After treatment, NAS showed a tendency to decrease in the RAU group.

Feasibility Analysis of HEC-RAS for Unsteady Flow Simulation in the Stream Channel with a Side-Weir Detention Basin (강변저류지가 있는 하도에서의 부정류 흐름 모의를 위한 HEC-RAS의 적용성 검토)

  • Kim, Seo-Jun;Hong, Sang-Jin;Yoon, Byung-Man;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.495-503
    • /
    • 2012
  • It is necessary to perform the precise analysis of unsteady flow for effective design of the side-weir detention basin installed in the river. Generally, the HEC-RAS program, which is a 1D unsteady numerical model, is mostly used to simulate the unsteady flow for rivers. However, it is difficult to have confidence of unsteady flow results simulated by HEC-RAS due to the lack of experimental data and field monitoring data for the channel with a side-weir detention basin. Therefore, the purpose of this study is to validate or verify the simulation results calculated by HEC-RAS through the experiments for the open channel with a side-weir detention basin using specially-designed unsteady discharge-supply system. The experimental cases included unsteady flows in the straight channel with and without a side-weir detention basin. Especially, for the case with a detention basin, the experiment was performed to consider only the free flow condition over the side-weir. The study results showed that values of water level and discharge obtained from HEC-RAS coincided reasonably with experimental results with the maximum error of 3% for water level and 1% for discharge in the case of the flow without the side-weir detention basin and 4% for water level and 2% for discharge with the side-weir detention basin.

Numerical Comparisons of Flow Properties Between Indivisual and Comprehensive Consideration of River Inundation and Inland Flooding (하천범람과 내수침수의 개별적·복합적 고려에 따른 흐름 특성의 수치적 비교)

  • Choi, Sang Do;Eum, Tae Soo;Shin, Eun Taek;Song, Chang Geun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.115-122
    • /
    • 2020
  • Due to the climate change, torrential rain downpours unprecedentedly, and urban areas repeatedly suffer from the inundation damages, which cause miserable loss of property and life by flooding. Two major reasons of urban flooding are river inundation and inland submergence. However, most of previous studies ignored the comprehensive mechanism of those two factors, and showed discrepancy and inadequacy due to the linear summation of each analysis result. In this study, river inundation and inland flooding were analyzed at the same time. Petrov-stabilizing scheme was adopted to capture the shock wave accurately by which river inundation can be modularized. In addition, flux-blocking alrotithm was introduced to handle the wet and dry phenomena. Sink/source terms with EGR (Exponentially Growth Rate) concept were incorporated to the shallow water equations to consider inland flooding. Comprehensive simulation implementing inland flooding and river inundation at the same time produced satisfactory results because it can reflect the counterbalancing and superposition effects, which provided accurate prediction in flooding analysis.

A Numerical study on characteristics of fluid flow in a three-dimensional discrete fracture network with variation of length distributions of fracture elements (3차원 이산 균열망 흐름장에서 균열요소의 길이분포 변화에 따른 내 유체 흐름 특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.149-161
    • /
    • 2019
  • In this study, the effect of the fluid flow characteristics on the length distribution of the fracture elements composing the fracture network is analyzed numerically using the 3D fracture crack network model. The truncated power-law distribution is applied to generate the length distribution of the fracture elements and the simulations of fluid flow are carried out with the exponent ${\beta}_l$ from 1.0 to 6.0. As a result of simulations, when the exponent ${\beta}_l$ increases, the length distribution of the fracture elements gradually decreases, and the connectivity between the fracture elements affecting the permeability of the fracture network becomes weak. When we analyzed the distributions of flow rate calculated at each fracture element with the exponent ${\beta}_l$, the mean flow rate at ${\beta}_l=1.0$ was estimated to be about 447 times larger than that at ${\beta}_l=6.0$ and for the flow calculated at the outflow boundary of the fracture network, the case of ${\beta}_l=1.0$ was estimated to be 6,440 times larger than that of ${\beta}_l=6.0$.

Estimating Carrying Capacity of Lake Shihwa for Water Quality Management (수질관리를 위한 시화호의 환경용량 산정)

  • Kim, Hyung-Chul;Choi, Woo-Jeung;Lee, Won-Chan;Koo, Jun-Ho;Lee, Pil-Yong;Park, Sung-Eun;Hong, Seok-Jin;Jang, Ju-Hyoung
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.571-581
    • /
    • 2007
  • The mechanism of water pollution in Lake Shihwa, one of highly eutrophicated artificial lakes in Korea, has been studied using a numerical 3D physical-biochemical coupled model. In this study, the model was applied to estimate the contribution of land-based pollutant load to water quality of heavily polluted Lake Shihwa. The chemical oxygen demand(COD) was adopted as an index of the lake water quality, and the spatial distribution of an average COD concentration during the summer from 1999 to 2000 was simulated by the model. The simulated COD showed a good agreement with the observed data. According to reproducibility of COD, the high-est levels between 8 and 9 mg/L were shown at the inner site of the lake with inflow of many rivers and ditches, while the lowest was found to be about 5 mg/L at the southwestern site near to dike gate. In the pre-diction of water quality of Lake Shihwa, COD showed still higher levels than 3 mg/L in case of reduction of 95% for land-based pollutant load. This suggests that the curtailment of land-based pollutant load is not only sufficient but the improvement of sediment quality or the increase of seawater exchange should be considered together to improve a water quality in Lake Shihwa.

Optimization of Ingredients for the Preparation of Chinese Quince (Chaenomelis sinensis) Jam by Mixture Design (모과잼 제조시 혼합물 실험계획법에 의한 재료 혼합비율의 최적화)

  • Lee, Eun-Young;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.935-945
    • /
    • 2009
  • This study was performed to find the optimum ratio of ingredients in the Chinese quince jam. The experiment was designed according to the D-optimal design of mixture design, which included 14 experimental points with 4 replicates for three independent variables (Chinese quince paste $45{\sim}60%$, pectin $1.5{\sim}4.5%$, sugar $45.5{\sim}63.5%$). A mathematical analytical tool was employed for the optimization of typical ingredients. The canonical form and trace plot showed the influence of each ingredient in the mixture against final product. By use of F-test, sweetness, pH, L, b, ${\Delta}E$, and firmness were expressed by a linear model, while the spreadmeter value, a, and sensory characteristics (appearance, color, smell, taste, and overall acceptability) were by a quadratic model. The optimum formulations by numerical and graphical method were similar: Chinese quince paste 54.48%, pectin 2.45%, and sugar 53.07%. Optimum ingredient formulation is expected to improve use of Chinese quince and contribute to commercialization of high quality Chinese quince jam.

Evaluation of the Relationship between Geogrid Rib Size and Particle Size Distribution of Ballast Materials using Discrete Element Method (개별요소해석법을 이용한 지오그리드 격자 크기와 도상자갈재료 입도분포 상관관계 평가)

  • Pi, Ji-Hyun;Oh, Jeongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • This study evaluated the shear behavior of geogrid reinforced ballast material using a large scale direct shear test and discrete element method (DEM) based on PFC 3D program. The direct shear test was conducted on ballast materials that have different particle size distributions. Whereas the test results revealed that the shear strength generally increased with the larger particle size of ballast material without geogrid reinforcement, the shear behavior of ballast material was found to change pertaining to the relationship between particle size distribution and geogrid rib size. Generally, it is deemed the effectiveness of reinforcement can be achieved when the rib size is two times greater than average particle size. A numerical analysis based on DEM was conducted to verify the test results. The geogrid modeling was successfully completed by calibration process along with sensitivity analysis to have actual tensile strength provided by manufacturer. With a given geogrid model, the parametric evaluation was further carried out to examine the interactive behavior between geogrid and ballast material. Consequently, it was found that the effectiveness zone of geogrid reinforcement generated within a specific depth.

Dynamic analysis of slack moored spar platform with 5 MW wind turbine

  • Seebai, T.;Sundaravadivelu, R.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.285-296
    • /
    • 2011
  • Spar platforms have several advantages for deploying wind turbines in offshore for depth beyond 120 m. The merit of spar platform is large range of topside payloads, favourable motions compared to other floating structures and minimum hull/deck interface. The main objective of this paper is to present the response analysis of the slack moored spar platform supporting 5MW wind turbine with bottom keel plates in regular and random waves, studied experimentally and numerically. A 1:100 scale model of the spar with sparD, sparCD and sparSD configuration was studied in the wave basin ($30{\times}30{\times}3m$) in Ocean engineering department in IIT Madras. In present study the effect of wind loading, blade dynamics and control, and tower elasticity are not considered. This paper presents the details of the studies carried out on a 16 m diameter and 100 m long spar buoy supporting a 90 m tall 5 MW wind turbine with 3600 kN weight of Nacelle and Rotor and 3500 kN weight of tower. The weight of the ballast and the draft of the spar are adjusted in such a way to keep the centre of gravity below the centre of buoyancy. The mooring lines are divided into four groups, each of which has four lines. The studies were carried out in regular and random waves. The operational significant wave height of 2.5 m and 10 s wave period and survival significant wave height of 6 m and 18 s wave period in 300 m water depth are considered. The wind speed corresponding to the operational wave height is about 22 knots and this wind speed is considered to be operating wind speed for turbines. The heave and surge accelerations at the top of spar platform were measured and are used for calculating the response. The geometric modeling of spar was carried out using Multisurf and this was directly exported to WAMIT for subsequent hydrodynamic and mooring system analysis. The numerical results were compared with experimental results and the comparison was found to be good. Parametric study was carried out to find out the effect of shape, size and spacing of keel plate and from the results obtained from present work ,it is recommended to use circular keel plate instead of square plate.