• Title/Summary/Keyword: 2-axis Manipulator

Search Result 45, Processing Time 0.03 seconds

Study on Design, Control and Program of a parallel manipulator for machining work (기계가공로봇의 설계, 제어 및 프로그램에 관한 연구)

  • 박근우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.519-522
    • /
    • 2001
  • In this paper, I propose double parallel manipulator for machining work. And I derive an kinematics by combining the kinematics of the central axis and the kinematics of the link train of linear actuator. The Jacobian of the central axis and the Jacobian of the link train of the linear actuators are induced by a motor algebra and they are combined to an entire Jacobian matrix to transform the velocity of the end effector to those of linear actuators. And then this paper presents the development of control system and user interface program for machining work.

  • PDF

Decentralized Adaptive fuzzy sliding mode control of Robot Manipulator

  • Kim, Young-Tae;Lee, Dong-Wook
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.34-40
    • /
    • 2001
  • Robot manipulator has highly nonlinear dynamics. Therefore the control of multi-link robot arms is a challenging and difficult problem. In this paper a decentralized adaptive fuzzy sliding mode scheme is developed for control of robot manipulators. The proposed scheme does not require an accurate manipulator dynamic model, yet it guarantees asymptotic trajectory tracking despite gross robot parameter variations. Numerical simulation for decentralized control of a 3-axis PUMA arm will also be included.

  • PDF

A Fine Manipulator with Compliance for Wafer Probing System (컴플라이언스를 갖는 웨이퍼 탐침 시스템용 미동 매니퓰레이터)

  • Choi, Kee-Bong;Kim, Soo-Hyun;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.68-79
    • /
    • 1997
  • A six DOF fine manipulator based on magnetic levitation is developed. Since most of magnetic levitation system are inherently unstable, a proposed magnetically levitated fine manipulator is implemented by use of an antagonistic structure to increase stability. From mathematical modeling and experiment, the equations of motion are derived. In addition, a six DOF sensing system is implemented by use of three 2-axis PSD sensors. A model reference-$H_{\infty}$ controller is applied to the system for the position control, In application of the fine manipulator, a wafer probing system is proposed to identify nonfunctional circuts. The probing system requires compliance to avoid destruction of DUT(device under test). A feedfor- ward-PD controllers are presented by the terms of the position accuracy, the settling time and the force accuracy.y.

  • PDF

Observer Based Sensorless Rorce Control of Robot Manipulator

  • Suh, Il-Hong;Eom, Kwang-Sik;Lee, Chang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.803-806
    • /
    • 1997
  • In this paper, a force estimation method is proposed for the sensorless force control. For this, a disturbance observer is applied to each joint of an n degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer in the absence of external force, the observer estimator is designed, where the uncertain parameters of the robot manipulator are adjusted by gradient method to minimize the output between the disturbance observer and the observer estimator. When the external force is exerted, the external force is estimated using the difference between the output of disturbance observer which include the external torque signal and that of observer estimator. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples are illustrated for the 2-axis planar type robot manipulator.

  • PDF

A Study on the Pseudoinverse Kinematic Motion Control of 6-Axis Arc Welding Robot (6축 아크 용접 로보트의 의사 역기구학적 동작 제어에 관한 연구)

  • Choi, Jin-Seob;Kim, Dong-Won;Yang, Sung-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1993
  • In robotic arc welding, the roll (rotation) of the torch about its direction vector does not have any effect on the welding operation. Thus we could use this redundant degree of greedom for the motion control of the robot manipulator. This paper presents an algorithm for the pseudo- inverse kinematic motion control of the 6-axis robot, which utilizes the above mentioned redunancy. The prototype welding operation and the tool path are also graphically simulated. Since the proposed algorithm requires only the position and normal vector of the weldine as an input data, it is useful for the CAD-based off-line programming of the arc welding robot. In addition, it also has the advantages of the redundant manipulator motion control, like singularity avoidance and collision free motion planning, when compared with the other motion control method based on the direct inverse kinematics.

  • PDF

Accurrate Position Control of Pneumatic Manipulator Using On/Off Valves (On/Off 밸브를 이용한 공압 매니퓰레이터의 고정도 위치제어)

  • Pyo Sung Man;Ahn Kyoung Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • Loading/Unloading task in the real industry is performed by crane, but most of the loading/unloading task with the weight of 5kg∼30kg is done by human workers and this kind of work causes industrial disaster of workers. Therefore it is necessary to develop low cost loading/unloading manipulator system to prevent this kind of industrial accidents. This paper is concerned with the design and fabrication of 2 axis pneumatic manipulators using on/off solenoid valves and accurate position control without respect to the external load and low damping in the pneumatic rotary actuator. To overcome the change of external load, switching of control parameter using LVQNN (Learning Vector Quantization Neural Network) is newly applied, which estimates the external loads in the pneumatic cylinder. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied to the switching control system. The effectiveness of the proposed control algorithms are demonstrated through experiments of pneumatic cylinder with various loads.

Structure Analysis of the Light Robot Manipulator Capable of Handling Heavy Payloads (고가반 하중 이송가능한 경량 로봇 매니퓰레이터의 구조해석 연구)

  • Choi, Hyeung-Sik;Cho, Jong-Rae;Hur, Jae-Gwan;Chun, Chi-Kwang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.318-324
    • /
    • 2010
  • In this paper, the structure of the gravity compensator has been designed and applied to a light structure of a new 6-axis robot manipulator to enhance its torque performance. Also, analyses on the kinematics and inverse-kinematics of the manipulator have been performed. An FEM analysis has been performed on the structure of robot links to have an excellent performance of delivering 25 kg payload despite of 30kg weight, which is very light compared with other manipulators. Through the FEM analysis, the stability on the vending or fracture of the links of the robot manipulator has been verified.

Characteristics of Operator to Malfunctions of Multi-jointed Manipulator Arm during Maintenance and Decommissioning of Nuclear Facilities (원자력시설 유지보수 및 해체 작업시 다관절 매니퓰레이터 이상동작에 대한 작업자의 특성)

  • Jeong, Kwan-Seong;Moon, Jei-Kwon;Lee, Kune-Woo;Hyun, Dong-Jun;Choi, Byung-Seon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.87-96
    • /
    • 2012
  • With a view to determine a safe speed the limit of a manipulator arm, several experiments was performed with a multi-jointed manipulator in maintenance and decommissioning tasks of nuclear facilities. Under the simulated emergency conditions, which were generated with random combinations of manipulator arm speed, failure probability and failure type, response characteristics of human operators to various malfunctions of a manipulator arm were measured in terms of reaction time, number of false alarm, and number of misses. This paper demonstrated that failure type, manipulator axes and manipulator arm speed has significant effects on human reaction time. As a whole the reaction time was slightly increased with manipulator arm speed, which is showed somewhat different pattern due to failure type. The reaction time to an axis acting on a workpiece directly, which could flex and extend, was fastest and much more its standard deviation was small. Various factors which may affect safe speed were also described.