• 제목/요약/키워드: 2-Phase Flow

검색결과 2,086건 처리시간 0.035초

Two-Phase Flows and Boiling Heat Transfer in Microchannels

  • Oh, Jong-Taek;Ardiyansyah, Ardiyansyah
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권2호
    • /
    • pp.51-63
    • /
    • 2008
  • A study of literatures on flow boiling heat transfer and two-phase flows inside microchannels is summarized. The potential applications, fabrication method and efforts to determine certain dimensional threshold for microchannels classifications are discussed. For the last two decades, numerous two-phase flow and heat transfer models for microchannels have been developed; many of them were derived from empirical models originally applied for conventional channels. Those models are discussed here along with a brief review on recent development of theoretical and phenomenological-based models for microchannels. This study is devoted to provide a review of important issues on flow boiling heat transfer and two-phase flows inside microchannels, including two-phase flow patterns, boiling heat transfer mechanism and correlations developments, pressure drop and prediction methods, and critical heat flux.

캐비테이션 유동해석을 위한 기- 2상 국소균질 모델 -제2보: 기-액 2상 매체중의 고속유동현상 (GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW -Part II. HIGH SPEED FLOW PHENOMENA IN GAS-LIQUID TWO-PHASE MEDIA)

  • 신병록;박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.91-97
    • /
    • 2014
  • A high resolution numerical method aimed at solving cavitating flow was proposed and applied to gas-liquid two-phase shock tube problem with arbitrary void fraction. The present method with compressibility effects employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. The Jacobian matrix from the inviscid flux of constitute equation is diagonalized analytically and the speed of sound for the two-phase media is derived by eigenvalues. So that the present method is appropriate for the extension of high order upwind schemes based on the characteristic theory. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results of high speed flow phenomena such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and solutions at isothermal condition are provided and discussed.

회분식 반응기에서 반응폭주에 의한 2-Phase 흐름 파열판 설계 및 적용에 관한 연구 (A Study on the Rupture Disk Design and Application at the Two Phase Flow by Runaway Reaction at Batch Reactor)

  • 이형섭;윤희창
    • 한국가스학회지
    • /
    • 제21권3호
    • /
    • pp.1-8
    • /
    • 2017
  • 이 연구의 목적은 회분식 반응기에서 반응폭주에 의하여 2상(기상-액상)에서 적용가능한 파열판의 크기를 설계하는 방안을 제시하는 것이다. 반응폭주의 정의는 제어가 되지 않은 냉각수 투입불가 또는 운전조건의 이탈에 의한 비정상적으로 발열반응을 말한다. 이 결과로 반응기의 온도는 급격히 증가하게 된다. 반응폭주의 원인은 크게 자기과열반응과 지연반응으로 구분한다. 일반적인 안전밸브나 파열판의 내경 크기로는 폭주반응시에는 적절하게 압력을 해소할 수 없다. 폭주반응 시 반응온도 및 압력이 급격하게 증가하기 때문에 안전밸브로 분출되는 내용물은 2상이다. 이 연구에서는 최근 회분식 반응기의 폭주반응으로 인하여 사고사례의 원인을 분석하고, 2 상으로 분출현상 및 특징을 설정하고, 이에 적절한 파열판의 크기를 설계하여 적용하는 방안을 제시하고자 한다.

Optical Image Encryption Technique Based on Hybrid-pattern Phase Keys

  • Sun, Wenqing;Wang, Lei;Wang, Jun;Li, Hua;Wu, Quanying
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.540-546
    • /
    • 2018
  • We propose an implementation scheme for an optical encryption system with hybrid-pattern random keys. In the encryption process, a pair of random phase keys composed of a white-noise phase key and a structured phase key are positioned in the input plane and Fourier-spectrum plane respectively. The output image is recoverable by digital reconstruction, using the conjugate of the encryption key in the Fourier-spectrum plane. We discuss the system encryption performance when different combinations of phase-key pairs are used. To measure the effectiveness of the proposed method, we calculate the statistical indicators between original and encrypted images. The results are compared to those generated from a classical double random phase encoding. Computer simulations are presented to show the validity of the method.

Counter-Current Air-Water Flow in Narrow Rectangular Channels With Offset Strip Fins

  • Kim, Byong-Joo;Sohn, Byung-Hu;Koo, Kee-Kahb
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.429-439
    • /
    • 2003
  • Counter-current two-phase flows of air- water in narrow rectangular channels with offset strip fins have been experimentally investigated in a 760 mm long and 100 mm wide test section with 3.0 and 5.0 mm gap widths. The two-phase flow regime, channel-average void fractions and two-phase pressure gradients were studied. Flow regime transition occurred at lower superficial velocities of air than in the channels without fins. In the bubbly and slug flow regimes, elongated bubbles rose along the subchannel formed by fins without lateral movement. The critical void fraction for the bubbly-to-slug transition was about 0.14 for the 3 mm gap channel and 0.2 for the 5 mm gap channel. respectively. Channel-average void fractions in the channels with fins were almost the same as those in the channels without fins. Void fractions increased as the gap width increased, especially at high superficial velocity of air. The presence of fins enhanced the two-phase distribution parameter significantly in the slug flow, where the effect of gap width was almost negligible. Superficial velocity of air dominated the two-phase pressure gradients. Liquid superficial velocity and channel gap width has only a minor effect on the pressure gradients.

맥동압력조건에서 재생기를 통한 왕복유동의 압력강하 특성에 대한 연구 (Investigation on the pressure drop characteristics of oscillating flow through regenerators under pulsating pressure conditions)

  • 최성열;남관우;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.51-57
    • /
    • 2003
  • This paper proposes a new oscillating flow model of the pressure drop through the regenerator under pulsating pressure. In this oscillating flow model. pressure drop is expressed by the amplitude and the phase angle with respect to the inlet mass flow rate. In order to generalize the oscillating flow model. non-dimensional parameters, which are Reynolds number, Valensi number, gas domain length ratio, oscillating flow friction factor and phase angle of pressure drop, are derived from the capillary tube model of the regenerator. Correlations for the oscillating flow friction factor and the phase angle are obtained from the experiments for the twill-square screen regenerators under various operating frequencies and inlet mass flow rates. The oscillating friction factor is a function of the Reynolds number alone and the phase angle of pressure drop is a function of the Valensi number and the gas domain length ratio. Experiment is also performed to examine the effect of the weave style of screen. Experimental data demonstrate the superiority of the oscillating flow model over the previous steady flow model.

석유생산 시스템에서 다상유동의 패턴 결정 (Determination of Flow Patterns for Multi-Phase Flow in Petroleum Production Systems)

  • 이근상;김현태
    • 자원환경지질
    • /
    • 제44권2호
    • /
    • pp.153-159
    • /
    • 2011
  • 본 연구에서는 포괄적 역학모델을 이용하여 석유 생산 시스템의 파이프 내 가스-오일 2상유동에 대한 유동패턴을 결정하였다. 2상의 유체는 운영 인자, 기하학적 변수, 유체 물성 등에 따라 특정의 유동패턴을 나타냈다. 광범위한 기액 겉보기 속도에 대하여 시스템의 인자들을 변화시키면서 유동패턴을 비교하였다. 다양한 인자들 중 경사각과 겉보기 속도가 파이프 내 가스-오일 2상유동의 유용패턴을 결정하는데 가장 지배적인 인자로 나타났다. 파이프 직경, 유체 물성 등의 인자들은 전이 경계선 부근을 제외하면 유동패턴 변화에 제한적인 영향 만을 미쳤다. 역학모델은 실험실 평가나 신뢰성있는 상관식 이용이 불가능할 때 유동패턴을 결정할 수 있는 유용한 도구이다.

기상반응에 의한 $\beta$-SiC 초미분말 합성시 수소 가스유량과 TMS 농도의 영향 (The Effect of H2 Flow Rate and TMS Concentration on Synthesizing Ultrafine $\beta$-SiC Powder by Vapor Phase Reaction)

  • 유용호;어경훈;소명기
    • 한국세라믹학회지
    • /
    • 제36권8호
    • /
    • pp.853-858
    • /
    • 1999
  • To investigate the effect of H2 flow rate and TMS[Si(CH3)4] concentration on synthesizing ultrafine ${\beta}$-SiC powder by vapor phase reaction the experiment was performed at 1100$^{\circ}C$ of the reaction temperature under the condition of 200-2000 cc/min of H2 gas flow rate and 1-10% of TMS concentration respectively. The shape of ${\beta}$-SiC particles synthesized was spherical and the size of particles decreased and the distribution of particles was more uniform with increasing H2 gas flow rate. In this case Si powders were coexisted with ${\beta}$-SiC Pure and ultrafine ${\beta}$-SiC powders without Si were obtained under the condition of above 2% of TMS concentration and below 1500 cc/min of H2 gas flow rate.

  • PDF

자동차용 고분자 연료전지 수소 재순환 시스템의 이상 유동해석 (Two-Phase Flow Analysis of The Hydrogen Recirculation System for Automotive Pem Fuel Cell)

  • 곽현주;정진택;김재춘;김용찬;오형석
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.446-454
    • /
    • 2008
  • The purpose of this paper is to analyze two-phase flows of the hydrogen recirculation system. Two-phase flow modeling is one of the great challenges in the classical sciences. As with most problems in engineering, the interest in two-phase flow is due to its extreme importance in various industrial applications. In hydrogen recirculation systems of fuel cell, the changes in pressure and temperature affect the phase change of mixture. Therefore, two-phase flow analysis of the hydrogen recirculation system is very important. Two-phase computation fluid dynamics (CFD) calculations, using a commercial CFD package FLUENT 6.2, were employed to calculate the gas-liquid flow. A two-phase flow calculation was conducted to solve continuity, momentum, energy equation for each phase. Then, the mass transfer between water vapor and liquid water was calculated. Through an experiment to measure production of liquid water with change of pressure, the analysis model was verified. The predictions of rate of condensed liquid water with change of pressure were within an average error of about 5%. A comparison of experimental and computed data was found to be in good agreement. The variations of performance, properties, mass fraction and two-phase flow characteristic of mixture with resepct to the fuel cell power were investigated.

경사각 이상유동양식 천이에 관한 실험적 연구 (Experimental study on flow pattern transitions for inclined two-phase flow)

  • 곽남이;김만웅;이재영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3021-3026
    • /
    • 2007
  • In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  • PDF