• Title/Summary/Keyword: 2-Fluid nozzle

Search Result 239, Processing Time 0.02 seconds

A Study on the Effect of Inflammable Materials on the Control Characteristics of Thermal and Smoke Fluid of Water Curtain System (가연성 물질에 따른 워터커튼 시스템의 열 및 연기유동 제어특성에 관한 연구)

  • You, Woo-Jun;Nam, Jun-Seok;Kim, Dong-Joon;Lee, Jeong-Kyoon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.53-58
    • /
    • 2012
  • In this study fire control characteristics for inflammable materials of water curtain system are experimentally analyzed. Heat release rate for pinewood and gasoline was calculated using Room Corner Tester (RCT) and fire test apparatus for water curtain system is manufactured. Nozzles (180 degree of injection angle, 8.2 mm of orifice diameter) are installed at the nearby ceiling of place at 5 m distance from fire originate and temperature profile as well as transmission are obtained from the fire experiment of pinewood and gasoline in the water curtain system. Based on the results, parameters of engineering importance for fire control characteristics of water curtain system such as generation of high temperature smoke and thermal phenomena of fluid flow by injection nozzle are identified.

A Study on Seawater Flow Characteristics inside the Shrouds used in Tidal Current Generation Systems for Various Geometric Angles under Constant Tidal Current Velocity (조류발전 시스템용 쉬라우드의 형상각도별 일정 조류속도장 내 해수유동 특성연구)

  • Kim, Jong-Won;Lee, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Numerical analyses through Computational Fluid Dynamics have been performed to investigate the seawater flow field characteristics for various shrouds used in horizontal axis tidal current turbine systems. Seawater flow characteristics are largely influenced under constant tidal current velocity by the shroud geometry and there is considerable difference in fluid velocity distributions around the shrouds. Especially the location and magnitude of maximum seawater flow velocity directly affect turbine performance for power generation. For the cylinder-diffuser type shroud system whose cylinder and diffuser parts have the same length accelerated flow region is formed in the overall cylinder part while maximum velocity in the nozzle-diffuser type whose nozzle and diffuser parts have the same length with symmetry, locally appears near the minimum sectional area. In case of cylinder-diffuser type shroud fluid velocity increases rather high compared with current velocity. And fluid velocity at the centerline gradually increases from the entrance, and then decreases rapidly after reaching a peak close to the middle of the cylinder part unlike the nozzle-diffuser while there is not much variation near the rear of the shroud. These results of the seawater flow characteristics with various shroud geometries can be applied to optimal design for the development of efficient tidal current power generation systems.

Performance and Flow Condition of Cross-Flow Wind Turbine with a Symmetrical Casing Having Side Boards

  • Shigemitsu, Toru;Fukutomi, Junichiro;Toyohara, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.169-174
    • /
    • 2016
  • A cross-flow wind turbine has a high torque coefficient at a low tip speed ratio. Therefore, it is a good candidate for use as a self-starting turbine. Furthermore, it has low noise and excellent stability; therefore, it has attracted attention from the viewpoint of applications as a small wind turbine for an urban district. However, its maximum power coefficient is extremely low (10 %) as compared to that of other small wind turbines. In order to improve the performance and flow condition of the cross-flow rotor, the symmetrical casing with a nozzle and a diffuser are proposed and the experimental research with the symmetrical casing is conducted. The maximum power coefficient is obtained as $C_{pmax}=0.17$ in the case with the casing and $C_{pmax}=0.098$ in the case without the casing. In the present study, the power characteristics of the cross-flow rotor and those of the symmetrical casing with the nozzle and diffuser are investigated. Then, the performance and internal flow patterns of the cross-flow wind turbine with the symmetrical casings are clarified. After that, the effect of the side boards set on the symmetrical casing is discussed on the basis of the analysis results.

Preparation process of functional particles: II. Particle coating by rapid expansion of supercritical fluid solutions (기능성 미분말의 제조공정에 관한 연구: II. 초임계 분출법에 의한 입자 코팅)

  • 류완원;김영도;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.673-676
    • /
    • 1998
  • The Rapid Expansion of Supercritical fluid Solutions (RESS) process was applied to particles coating. Experiments were conducted in a fluidized bed with an internal nozzle in the center of the reaction tube. Pure glass beads (500~590$\mu$m, 74~149$\mu$m) and glass beads covered with brilliant blue were used as the core particles. Supercritical $CO_2$ solutions of paraffin were expanded through the nozzle into the bed that was fluidized by air. The precipitate coating materials on core surface was analyzed by using SEM, FT-IR. The releasing behavior of brilliant blue was inspected by atomic absorbance spectrophotometer. The release behavior of coated particles superior to noncoated particles.

  • PDF

A Numerical Study for Design Optimization of Nozzle Injection Angle in Tenter Machine (텐터기 노즐 분사각의 최적설계를 위한 수치해석적 연구)

  • Chun, Du Hwan;Park, Si Woo;Kim, Jung Han
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.134-139
    • /
    • 2013
  • A tenter is very important to dry and heat-set fabrics in textile dyeing and finishing industry. However, the tenter machine typically utilizes more than 80% of all the power in dyeing system, and yet is one of the primary machine which affects quality of fabrics. Therefore, performance optimization of the tenter machine is required to reduce energy consumption and enhance quality of fabrics. To optimize the tenter machine, it is important to maintain the uniform flow rate, which can be obtained by optimizing a nozzle geometry. In this study, emboss hole angle was investigated as main parameter in flow rate uniformity and heat flux efficiency. The analysis results were compared with those acquired from bench-scale dryer test in the laboratory. The tenter machine performance simulated by Computational Fluid Dynamics(CFD) was optimized by controlling emboss hole angle.

A Study of the Effect of Operating Time of a Rocket Motor on the Convective Heat Transfer Coefficient of Nozzle (로켓 모터의 작동시간이 노즐 열전달 계수에 미치는 영향에 관한 연구)

  • Kim, Jinsoo;Kim, Kyungsik;Cho, Seunghwan;Kwon, Youngdoo;Kwon, Soonbum
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.24-30
    • /
    • 2013
  • To guarantee the exact control of missile warhead, it is inevitable to ensure the stabilities in the view points of structural and fluid/thermo dynamics of the rocket motor. Specially, despite of shortness in operating time of the rocket motor which is initial turning type of missile, it occurs frequently some problems of ablation at the neighborhood of the nozzle throat, with the result that the system itself gets to failure. In these connections, in the present study, the effect of the operating time of a rocket motor on the coefficient of convective heat transfer at the nozzle wall is investigated by numerical analysis. As a result, it is turned out that the heat transfer coefficient is largest at the just ahead of nozzle throat and decreases with the increase of operating time of the rocket motor. Furthermore, we found that the radius of curvature of throat becomes smaller, the maximum coefficient of convective heat transfer becomes larger.

Numerical Study on Optimization of the SCR Process Design in Horizontal HRSG for NOx Reduction (수평형 폐열회수보일러 배기탈질 SCR시스템의 최적설계를 위한 수치해석적 연구)

  • Kim, Kyeongsook;Lee, Kyeongok
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1481-1498
    • /
    • 2013
  • The SCR (selective catalytic reduction) system is highly-effective technique for NOx reduction from exhaust gases. In this study, the effects of the direction and size of nozzle and the ammonia injection concentration on the performance of SCR system are analyzed by using the computational fluid dynamics method. When the nozzle is arranged in zigzaged direction which is normal to exhausted gas flow, it is shown that the uniformity of gas flow and the NH3/NO molar ratio is improved remarkably. With the change of the ammonia injection concentration from 0.2 vol%(wet) to 1.0 vol%(wet), the uniformity of gas flow shows a good results. As the size of nozzle diameter changes from 6 mm to 12 mm, the uniformity of gas flow is maintained well. It is shown that the uniformity of the $NH_3/NO$ molar ratio becomes better with decreasing the ammonia injection concentration and the size of nozzle diameter.

Study on Fluidic Thrust Vector Control Based on Dual-Throat Concept (이중목 노즐 개념에 기반한 유체 추력벡터제어에 관한 연구)

  • Wu, Kexin;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.24-32
    • /
    • 2019
  • Numerical simulations were carried out in a supersonic nozzle to investigate the possibility of using dual-throat nozzle concept in fluidic thrust vector control. Validation of the methodology showed an excellent agreement between the computational fluid dynamics results and the experimental data available, which were based on the well-assessed SST $k-{\omega}$ turbulence mode. The deflection angle, system resultant thrust ratio, and thrust efficiency were investigated in a wide range of nozzle pressure ratios and injection pressure ratios. The performance variations of the dual-throat nozzle thrust vector control system were clearly illustrated with this two-dimensional computational domain. Some constructive conclusions were obtained that may be used as a reference for further studies in the fluidic thrust vector control field.

Microfabrication of the ISFET Cartridge by empolying Nozzle system (노즐의 원리를 도입한 ISFET 소형 카트리지 제작)

  • Kim, Hyun-Soo;Lee, Young-Chul;Kim, Young-Jin;Cho, Byung-Woog;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.320-326
    • /
    • 1999
  • A small cartridge, with a nozzle system for washing off the dirt from the surfaces of sensing gates, was fabricated. The proposed nozzle structure was designed for cartridge by using the simulation tool of fluid (CFD-ACE). Whole size of the fabricated cartridge by using micromachining techniques is about $2.6\;cm{\times}1.5\;cm$, the size of the washing nozzle is $0.2\;mm{\times}0.6\;mm$ and its dead volume is only about $20\;{\mu}l$. A micro-reference electrode was achieved by employing a differential system with ISFETs/QRE (quasi-reference electrode)/REFET (reference field-effect transistor). Metal electrodes was deposited at both ends of blowing channel were used to check the presence of bubble in the microchannel. The pH-ISFET was inserted into the fabricated cartridge and the washing effect of the nozzle system in cartridge was invested.

  • PDF

An Experimental Study on the Small Power Generation of Temperature difference using the Freon-22 as Working Fluid (프레온-22를 작동유체로 사용한 소용량 온도차 발전에 관한 실험적 연구)

  • Jhoun, C.S.;Shin, I.H.;Huh, C.S.
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.26-38
    • /
    • 1988
  • If proper design and selection of the working fluid are made the power generation system of temperature difference could achieve more efficient results than others. This paper is to analysis the production of its power generation due to several parameters. Making the power generation system, the characteristics of power output are investigated to obtain its basic data for design. This results of this experiment are as follows. 1. The most proper working fluid in the system is Freon-22 having high stability and difference between the outlet pressure, $P_E$ of evaporator and outlet pressure, $P_c$ of Condenser. 2. With the increase of temperature difference between evaporator and condenser, the output in the system increases linearly. 3. The generation efficiency is largely dependent on the type or form of propeller, nozzle and optimum design of heat exchanger.

  • PDF