• Title/Summary/Keyword: 2-DOF active camera

Search Result 9, Processing Time 0.026 seconds

A Study on Object Tracking for Autonomous Mobile Robot using Vision Information (비젼 정보를 이용한 이동 자율로봇의 물체 추적에 관한 연구)

  • Kang, Jin-Gu;Lee, Jang-Myung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.235-242
    • /
    • 2008
  • An Autonomous mobile robot is a very useful system to achieve various tasks in dangerous environment, because it has the higher performance than a fixed base manipulator in terms of its operational workspace size as well as efficiency. A method for estimating the position of an object in the Cartesian coordinate system based upon the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and the real object, is proposed. With this position estimation, a method of determining an optimal path for the autonomous mobile robot from the current position to the position of object estimated by the image information using homogeneous matrices. Finally, the corresponding joint parameters to make the desired displacement are calculated to capture the object through the control of a mobile robot. The effectiveness of proposed method is demonstrated by the simulation and real experiments using the autonomous mobile robot.

  • PDF

Tracking and Capturing a Moving Object Using Active Camera Mounted on a Mobile Robot (이동로봇에 장착된 능동 카메라를 이용한 이동물체의 추적과 포획)

  • Park, Jin-U;Park, Jae-Han;Yun, Gyeong-Sik;Lee, Jang-Myeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.741-748
    • /
    • 2001
  • In this paper, we propose a method of tracking and capturing a moving object by a mobile robot. The position of the moving object is acquired from the relation through color-based image information from a 2-DOF active camera mounted on the mobile robot. The direction and rotational angular velocity of the moving object are estimated using a state estimator. A Kalman fiber is used as the state estimator for taking characteristics of robustness against noises and uncertainties included in the input data. After estimating the trajectory of the moving object, we decide on the optimal trajectory and plan the motion of the mobile robot to capture the target object within the shortest distance and time. The effectiveness of the proposed method is demonstrated by the simulations and experiments.

  • PDF

Navigation of a Mobile Robot Using Hand Gesture Recognition (손 동작 인식을 이용한 이동로봇의 주행)

  • Kim, Il-Myeong;Kim, Wan-Cheol;Yun, Gyeong-Sik;Lee, Jang-Myeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.599-606
    • /
    • 2002
  • A new method to govern the navigation of a mobile robot using hand gesture recognition is proposed based on the following two procedures. One is to achieve vision information by using a 2-DOF camera as a communicating medium between a man and a mobile robot and the other is to analyze and to control the mobile robot according to the recognized hand gesture commands. In the previous researches, mobile robots are passively to move through landmarks, beacons, etc. In this paper, to incorporate various changes of situation, a new control system that manages the dynamical navigation of mobile robot is proposed. Moreover, without any generally used expensive equipments or complex algorithms for hand gesture recognition, a reliable hand gesture recognition system is efficiently implemented to convey the human commands to the mobile robot with a few constraints.

Task Performance of a Mobile Manipulator using Cost Function and Vision Information (가격 함수 및 비젼 정보를 이용한 이동매니퓰레이터의 작업 수행)

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.345-354
    • /
    • 2005
  • A mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment, because it has the higher performance than a fixed base manipulator in terms of its operational workspace size as well as efficiency. A method for estimating the position of an object in the Cartesian coordinate system based upon the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and the real object, is proposed. With this Position estimation, a method of determining an optimal path for the mobile manipulator from the current position to the position of object estimated by the image information using homogeneous matrices. Finally, the corresponding joint parameters to make the desired displacement are calculated to capture the object through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiments using the mobile manipulator.

  • PDF

Object Position Estimation and Optimal Moving Planning of Mobile Manipulator based on Active Camera (능동카메라기반 이동매니퓰레이터의 물체위치추정 및 최적동작계획)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.1-12
    • /
    • 2005
  • A Mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment. because it has the higher performance than a fixed base manipulator in regard to the size of it's operational workspace. Unfortunately the use of a mobile robot introduces non-holonomic constraints, and the combination of a mobile robot and a manipulator generally introduces kinematic redundancy. In this paper, first a method for estimating the position of object at the cartesian coordinate system acquired by using the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and real object is proposed. Second, we propose a method to determine a optimal path between current the position of mobile manipulator whose mobile robot is non-holonomic and the position of object estimated by image information through the global displacement of the system in a symbolic way, using homogenous matrices. Then, we compute the corresponding joint parameters to make the desired displacement coincide with the computed symbolic displacement and object is captured through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiment using the mobile manipulator.

Optimal Trajectory Planning for Capturing a Mobile Object (이동물체 포획을 위한 최적 경로 계획)

  • 황철호;이상헌;조방현;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.

Visual Tracking Technique Based on Projective Modular Active Shape Model (투영적 모듈화 능동 형태 모델에 기반한 영상 추적 기법)

  • Kim, Won
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.77-89
    • /
    • 2009
  • Visual tracking technique is one of the essential things which are very important in the major fields of modern society. While contour tracking is especially necessary technique in the aspect of its fast performance with target's external contour information, it sometimes fails to track target motion because it is affected by the surrounding edges around target and weak egdes on the target boundary. To overcome these weak points, in this research it is suggested that PDMs can be obtained by generating the virtual 6-DOF motions of the mobile robot with a CCD camera and the image tracking system which is robust to the local minima around the target can be configured by constructing Active Shape Model in modular base. To show the effectiveness of the proposed method, the experiment is performed on the image stream obtained by a real mobile robot and the better performance is confirmed by comparing the experimental results with the ones of other major tracking techniques.

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF