• Title/Summary/Keyword: 2-D groundwater modeling

Search Result 29, Processing Time 0.025 seconds

Use of Audio-Band on the Interpretation of Magnetotelluric Data (MT 탐사자료의 해석에서 AMT 대역 자료의 효용성)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 2006
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeju Island has been carried out. Broad band MT sounding curves with good quality could be gathered by performing audio-frequency magnetotelluric (AMT) survey during the MT survey and by operating the remote reference in Kyushu Island, Japan. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands for the field data as well as for the data from numerical 2-D modeling said that high frequency information from AMT survey can be useful for interpreting not only the shallow part but also the deep structures, especially when the formation is resistive. The 2-D inversion models of field data show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. It can be either the effect of the surrounding sea water, or the structures due to ancient volcanic events. But unfortunately by now, we do not have any further information about the anomaly.

Numerical modeling of two-dimensional simulation of groundwater protection from lead using different sorbents in permeable barriers

  • Masood, Zehraa B.;Ali, Ziad Tark Abd
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.605-613
    • /
    • 2020
  • This study is to investigate the possibility of using activated carbon prepared from Iraqi date-pits (ADP) which are produced from palm trees (Phoenix dactylifera L.) as low-cost reactive material in the permeable reactive barrier (PRB) for treating lead (Pb+2) from the contaminated groundwater, and then compare the results experimentally with other common reactive materials such as commercial activated carbon (CAC), zeolite pellets (ZP). Factors influencing sorption such as contact time, initial pH of the solution, sorbent dosage, agitation speed, and initial lead concentration has been studied. Two isotherm models were used for the description of sorption data (Langmuir and Freundlich). The maximum lead sorption capacities were measured for ADP, CAC, and ZP and were found to be 24.5, 12.125, and 4.45 mg/g, respectively. The kinetic data were analyzed using various kinetic models particularly pseudo-first-order, pseudo-second-order, and intraparticle diffusion. COMSOL Multiphysics 3.5a depend on finite element procedure was applied to formulate transmit of lead (Pb+2) in the two-dimensional numerical (2D) model under an equilibrium condition. The numerical solution shows that the contaminant plume is hindered by PRB.

The Numerical Modeling Study for the Simultaneous Flow of Leachate and LFG in Kimpo Landfill (수도권 매립지에서 침출수-가스의 동시 유동 해석을 위한 전산 모델링 연구)

  • 성원모;박용찬;이광희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • Open dump of refuse causes groundwater and soil contamination by leachate and air pollution by LFG(Landfill Gas). In this paper, in order to perform a study about reduction of high leachate and LFG collection & control, using a 3-D, 2-phase, transient FDM model, the analysis of simultaneous flow of leachate and LFG has been carried out. In present numerical analysis it is assumed that 58 percents of LFG will evaporate to the ambient air and the recharge rate of a landfill be 12 percent of the average precipitation per year. All other data were excerpted at the point of 1995 when three refuse layers had been buried. From numerical analysis we concluded that maximum head value is approximately 26 mH2O<-에이치투오 (2.52 atm) in the center of the system and that installing venting trench plays an important role in landfill stabilization. Evan with the assumption of three layers constructed and low recharge rate applied, it is found that cumulative leachate and LFG productions will be 15.1 million 세제곱미터, 5.58 billion 세제곱미터, respectively after 40 years.

  • PDF

Conceptual Modeling on the Adsorption and Transport of Uranium Using 3-D Groundwater Flow and Reactive Transport Models (3차원 지하수 유동과 반응성용질이동 모델을 활용한 우라늄 흡착 및 이동에 관한 개념 모델링)

  • Choi, Byoung-Young;Koh, Yong-Kwon;Yun, Seong-Taek;Kim, Geon-Young
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.719-729
    • /
    • 2008
  • In this study, the speciation, adsorption, and transport of uranium in groundwater environments were simulated using geochemical models. The retarded transport of uranium by adsortption was effectively simulated using 3-D groundwater flow and reactive transport models. The results showed that most uranium was adsorbed(up to 99.5%) in a neutral pH(5.5$pCO_2(10^{-3.6}atm)$ condition. Under the higher $pCO_2(10^{-2.5}atm)$ condition, however, the pH range where most uranium was absorbed was narrow from 6 to 7. Under very low $pCO_2(10^{-4.5}atm)$ condition, uranium was mostly absorbed in the relatively wide pH range between 5.5 and 8.5. In the model including anion complexes, the uranium adsorption decreased by fluoride complex below the pH of 6. The results of this study showed that uranium transport is strongly affected by hydrochemical conditions such as pH, $pCO_2$, and the kinds and concentrations of anions($Cl^-$, ${SO_4}^{2-}$, $F^-$). Therefore, geochemical models should be used as an important tool to predict the environmental impacts of uranium and other hazardous compounds in many site investigations.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Simulation of Groundwater Flow and Sensitivity Analysis for a Riverbank Filtration Site in Koryeong, Korea (경북 고령군 강변여과 취수 지역의 지하수 유동 모사 및 민감도 분석)

  • Won, Lee-Jung;Koo, Min-Ho;Kim, Hyoung-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • A 2-D unconfined flow model is developed to analyze annual variations of groundwater level and bank filtration rate (BFR) for an experimental riverbank filtration site in Koryeong, Korea. Two types of boundary conditions are examined for the river boundary in the conceptual model: the static head condition that uses the average water level of the river and the dynamic cyclic condition that incorporates annual fluctuation of water level. Simulations show that the estimated BFR ranges $74.3{\sim}87.0%$ annually with the mean of 82.4% for the static head boundary condition and $52.7{\sim}98.1%$ with the mean of 78.5% for the dynamic cyclic condition. The results illustrate that the dynamic cyclic condition should be used for accurate evaluation of BFR. Simulations also show that increase of the distance between the river and the pumping wells slightly decreases BFR up to 4%, and thereby indicate that it is not a critical factor to be accounted for in designing BFR of the bank filtration system. A sensitivity analysis is performed to examine the effects of model parameters such as hydraulic conductivity and specific yield of the aquifer, recharge rate, and pumping rate. The results demonstrate that the average groundwater level and BFR are most sensitive to both the pumping rate and the recharge rate, while the water level of the pumping wells is sensitive to the hydraulic conductivity and the pumping rate.

Analysis of distortion effect of resistivity data due to 3D geometry of fill dam (필댐의 3차원 기하 효과에 따른 전기비저항 왜곡 효과 분석)

  • Oh Seokhoon;Kim Hyoung-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.55-58
    • /
    • 2005
  • Low resistivity zone is observed at the lower part of a CFRD (Concrete Face Rockfill Dam). Generally, CFRD tends not to have any saturated zone within the body, but the result of resistivity survey shows that it is possible for the dam to be saturated under 20m depth with water. The level of reservoir was under 10m from the crest. We suspect that this result may come from the wrong 2D inversion process ignoring the 3D geometry of dams. For the analysis of possibility of distortion by different geometry, we perform the 3D forward modeling for the dam and apply the 2D inversion process. And then we check the point of traditional interpretation of resistivity data. By the analysis, it is found that the result of 2D inversion process of 3D geometry of dams, seems to have deep relation with the reservoir level, and the complex 3D structure hide some internal electrical anomaly of dams from resistivity information.

  • PDF

Analysis of Distortion Effect of Resistivity Data Due to 3D Geometry of Fill Dam (필댐의 3차원 기하 효과에 따른 전기비저항 왜곡 효과 분석)

  • Oh, Seok-Hoon;Kim, Hyoung-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.211-214
    • /
    • 2005
  • Low resistivity zone is observed at the lower part of a CFRD (Concrete Face Rockfill Dam). Generally, CFRD tends not to have any saturated zone within the body, but the result of resistivity survey shows that it is possible for the dam to be saturated under 20m depth with water. The level of reservoir was under 10 m from the crest. We suspect that this result may come from the wrong 2D inversion process ignoring the 3D geometry of dams. For the analysis of possibility of distortion by different geometry, we perform the 3D forward modeling for the dam and apply the 2D inversion process. And then we check the point of traditional interpretation of resistivity data. By the analysis, it is found that the result of 2D inversion process of 3D geometry of dams, seems to have deep relation with the reservoir level, and the complex 3D structure hide some internal electrical anomaly of dams from resistivity information.

  • PDF

Electrical resistivity survey and interpretation considering excavation effects for the detection of loose ground in urban area

  • Seo Young Song;Bitnarae Kim;Ahyun Cho;Juyeon Jeong;Dongkweon Lee;Myung Jin Nam
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.109-119
    • /
    • 2023
  • Ground subsidence in urban areas due to excessive development and degraded underground facilities is a serious problem. Geophysical surveys have been conducted to estimate the distribution and scale of cavities and subsidence. In this study, electrical resistivity tomography (ERT) was performed near an area of road subsidence in an urban area. The subsidence arose due to groundwater leakage that carried soil into a neighboring excavation site. The ERT survey line was located between the main subsidence area and an excavation site. Because ERT data are affected by rapid topographic changes and surrounding structures, the influence of the excavation site on the data was analyzed through field-scale numerical modeling. The effect of an excavation should be considered when interpreting ERT data because it can lead to wrong anomalous results. A method for performing 2D inversion after correcting resistivity data for the effect of the excavation site was proposed. This method was initially tested using a field-scale numerical model that included the excavation site and subsurface anomaly, which was a loosened zone, and was then applied to field data. In addition, ERT data were interpreted using an existing in-house 3D algorithm, which considered the effect of excavation sites. The inversion results demonstrated that conductive anomalies in the loosened zone were greater compared to the inversion that did not consider the effects of excavation.

Modeling of Magnetotelluric Data Based on Finite Element Method: Calculation of Auxiliary Fields (유한요소법을 이용한 MT 탐사 자료의 모델링: 보조장 계산의 고찰)

  • Nam, Myung-Jin;Han, Nu-Ree;Kim, Hee-Joon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.164-175
    • /
    • 2011
  • Using natural electromagnetic (EM) fields at low frequencies, magnetotelluric (MT) surveys can investigate conductivity structures of the deep subsurface and thus are used to explore geothermal energy resources and investigate proper sites for not only geological $CO_2$ sequestration but also enhanced geothermal system (EGS). Moreover, marine MT data can be used for better interpretation of marine controlled-source EM data. In the interpretation of MT data, MT modeling schemes are important. This study improves a three dimensional (3D) MT modeling algorithm which uses edge finite elements. The algorithm computes magnetic fields by solving an integral form of Faraday's law of induction based on a finite difference (FD) strategy. However, the FD strategy limits the algorithm in computing vertical magnetic fields for a topographic model. The improved algorithm solves the differential form of Faraday's law of induction by making derivatives of electric fields, which are represented as a sum of basis functions multiplied by corresponding weightings. In numerical tests, vertical magnetic fields for topographic models using the improved algorithm overcome the limitation of the old algorithm. This study recomputes induction vectors and tippers for a 3D hill and valley model which were used for computation of the responses using the old algorithm.