• Title/Summary/Keyword: 2-D Field Analysis

Search Result 1,528, Processing Time 0.029 seconds

Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity (지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석)

  • 김민규;임윤묵;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

The comparison of Magnetic Field Distribution in Tubular Type LOA with Slot/Slotless Stator (Slot/Slotless 고정자를 갖는 Tubular형 LOA의 자계특성 비교)

  • Jang, Seok-Myeong;Seo, Jung-Chul;Choi, Jang-Young;Lee, Sung-Ho;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.68-70
    • /
    • 2004
  • This paper deals with comparison of magnetic field distribution in LOA with slotless/slot stator. We derived magnetic field solutions in terms of vector potential and cylinderical coordinates. In particular this paper accounts for slotting effect due to stator slot opening by introducing a 2-D relative permeance function. The results of predictions from the analysis are compared with corresponding finite element analysis.

  • PDF

Recommendation System for Research Field of R&D Project Using Machine Learning (머신러닝을 이용한 R&D과제의 연구분야 추천 서비스)

  • Kim, Yunjeong;Shin, Donggu;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1809-1816
    • /
    • 2021
  • In order to identify the latest research trends using data related to national R&D projects and to produce and utilize meaningful information, the application of automatic classification technology was also required in the national R&D information service, so we conducted research to automatically classify and recommend research field. About 450,000 cases of national R&D project data from 2013 to 2020 were collected and used for learning and evaluation. A model was selected after data pre-processing, analysis, and performance analysis for valid data among collected data. The performance of Word2vec, GloVe, and fastText was compared for the purpose of deriving the optimal model combination. As a result of the experiment, the accuracy of only the subcategories used as essential items of task information is 90.11%. This model is expected to be applicable to the automatic classification study of other classification systems with a hierarchical structure similar to that of the national science and technology standard classification research field.

Analysis of Ultrasonic Scattering Fields by 2-D Boundary Element Method and Its Application (2차원 경계요소법에 의한 초음파 산란음장의 해석과 응용)

  • Jeong, Hyunjo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1439-1444
    • /
    • 2005
  • A two-dimensional boundary element method was used for the scattering analysis of side-drilled hole(SDH). The far-field scattering amplitude was calculated for shear vertical(SV) wave, and their frequency and time-domain results were presented. The time-domain scattering amplitude showed the directly reflected wave from the SDH leading edge as well as the creeping wave. In an immersion, pulse-echo testing, two measurement models were introduced to predict the response from SDHs. The 2-D boundary element scattering amplitude was converted to the 3-D amplitude to be used in the measurement model. The receiver voltage was calculated fer SV wave incidence at 45$^{\circ}C$ on the 1 m diameter SDH, and the result was compared with experiment.

3-D Numerical analysis of flow and temperature field of automobile cabin by discharged air from defrost nozzle (Defrost nozzle의 토출 공기에 의한 승용차 실내 유동장 및 온도장 해석)

  • Kang K. T.;Park K. S.;Park W. G.;Jang K. R.
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.25-32
    • /
    • 2002
  • The velocity and temperature profiles in the cabin of the automobile affect greatly the comfortableness of passengers. In this paper, the three dimensional flow and temperature analysis in the cabin of real automobile have been peformed. The three dimensional Navier-Stokes equation solver was validated by comparing with the other numerical data of a 1/5 scale model. The temperature field of cavity was also analyzed for the validation of energy equation solver. After the code validation, the numerical analysis of real field of flow and temperature of an automobile was peformed and the present result provides the insight of flow and temperature field of the inside of cabin.

Study on Unsteady Flow Field around Rectangular Cylinders using Proper Orthogonal Decomposition (POD) (POD를 이용한 구조기본단면 주변 비정상흐름장 특성에 관한 연구)

  • Lee, Jae-Hyung;Matsumato, Masaru
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2008
  • In this study, the effect of an unsteady flow field around a body of aerostatic/aerodynamic forces were investigated using rectangular cylinders (B/D = 2, 3, 4, 5). Proper orthogonal decomposition (POD) was introduced to the analysis of the fluctuating pressure field that was measured on the stationary/oscillatory B/D=4 rectangular cylinder, and the characteristics of the proper functions with flow patterns were identified. In addition, the physical decoupling and interactions in the different co-existing flow patterns were investigated through POD. The comparison with the identified proper function associated with a particular flow pattern revealed that the Karman vortex is almost not affected by the separation bubble, but that the Karman vortex considerably interferes in the development of the separation bubble around the trailing edge. It can be considered that the Karman vortex induces the increment of the curvature of the substantial separated flow.

Magnetic, Electric field and Flowing analysis of pole with the Cylinder-wire-magnet type (Cylinder-wire헝 전극구성의 전자계 및 유체유동해석)

  • Lee, D.H.;Park, S.H.;Park, J.Y.;Kim, J.D.;Go, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1798-1800
    • /
    • 1997
  • Object of this paper is to find the best shape of cylinder, flowing velocity of gas and state of pole with the cylinder wire magnet type. Also it is to analysis phenomena arising in the cylinder. So that general program FLUX2D has used for magnetic and electric field analysis at the cylinder wire magnet type. General program PHOENICS has used for cold or hot gases flowing analysis at the cylinder wire type with magnet.

  • PDF

Calculation of the NMR Chemical Shift for a 3d$^2$ System in a Strong Crystal Field of Octahedral Symmetry

  • Ahn, Sang-Woon;Kim, Dong-Hee;Park, Eui-Suh
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.63-67
    • /
    • 1985
  • The NMR chemical shift arising from 3d electron spin dipolar nuclear spin angular momentum interactions for a 3d$^2$ system in a strong crystal field environment of octahedral symmetry has been investigated when the fourfold axis is chosen to be our axis of quantization. The NMR shift is separated into the contribution of 1/R$^5$ and 1/R$^7$ terms. A comparision of the multipolar terms with nonmultipolar results shows that the 1/R$^5$ term contributes dominantly to the NMR shift and there is in good agreement between the exact solution and the multipolar results when R ${\ge}$ 0.25. A temperature dependence analysis may lead to the results that the 1/T$^2$ term has the dominant contribution to the NMR shift for a paramagnetic 3d$^2$ system but the contribution of the 1/T term may not be negligible.