• Title/Summary/Keyword: 2-Banach spaces

Search Result 254, Processing Time 0.023 seconds

THE GENERAL SOLUTION AND APPROXIMATIONS OF A DECIC TYPE FUNCTIONAL EQUATION IN VARIOUS NORMED SPACES

  • Arunkumar, Mohan;Bodaghi, Abasalt;Rassias, John Michael;Sathya, Elumalai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.287-328
    • /
    • 2016
  • In the current work, we define and find the general solution of the decic functional equation g(x + 5y) - 10g(x + 4y) + 45g(x + 3y) - 120g(x + 2y) + 210g(x + y) - 252g(x) + 210g(x - y) - 120g(x - 2y) + 45g(x - 3y) - 10g(x - 4y) + g(x - 5y) = 10!g(y) where 10! = 3628800. We also investigate and establish the generalized Ulam-Hyers stability of this functional equation in Banach spaces, generalized 2-normed spaces and random normed spaces by using direct and fixed point methods.

STABILITY OF AN ADDITIVE (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN BANACH SPACES

  • Yun, Sungsik;Shin, Dong Yun
    • The Pure and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • In this paper, we introduce and solve the following additive (${\rho}_1$, ${\rho}_2$)-functional inequality $${\Large{\parallel}}2f(\frac{x+y}{2})-f(x)-f(y){\Large{\parallel}}{\leq}{\parallel}{\rho}_1(f(x+y)+f(x-y)-2f(x)){\parallel}+{\parallel}{\rho}_2(f(x+y)-f(x)-f(y)){\parallel}$$ where ${\rho}_1$ and ${\rho}_2$ are fixed nonzero complex numbers with $\sqrt{2}{\mid}{\rho}_1{\mid}+{\mid}{\rho}_2{\mid}<1$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the additive (${\rho}_1$, ${\rho}_2$)-functional inequality (1) in complex Banach spaces.

THE CONVERGENCE THEOREMS FOR COMMON FIXED POINTS OF UNIFORMLY L-LIPSCHITZIAN ASYMPTOTICALLY Φ-PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.295-305
    • /
    • 2010
  • In this paper, we show that the modified Mann iteration with errors converges strongly to fixed point for uniformly L-Lipschitzian asymptotically $\Phi$-pseudocontractive mappings in real Banach spaces. Meanwhile, it is proved that the convergence of Mann and Ishikawa iterations is equivalent for uniformly L-Lipschitzian asymptotically $\Phi$-pseudocontractive mappings in real Banach spaces. Finally, we obtain the convergence theorems of Ishikawa iterative sequence and the modified Ishikawa iterative process with errors.

CONVERGENCE THEOREM FOR KURZWEIL-HENSTOCK-PETTIS INTEGRABLE FUZZY MAPPINGS

  • Park, Chun-Kee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.279-291
    • /
    • 2010
  • In this paper, we introduce the Kurzweil-Henstock-Pettis integral of fuzzy mappings in Banach spaces in terms of the Kurzweil-Henstock-Pettis integral of set-valued mappings and obtain some properties of the Kurzweil-Henstock-Pettis integral of fuzzy mappings in Banach spaces and the convergence theorem for Kurzweil-Henstock-Pettis integrable fuzzy mappings.

HYERS-ULAM STABILITY OF AN ADDITIVE (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN BANACH SPACES

  • Park, Choonkil;Yun, Sungsik
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.161-170
    • /
    • 2018
  • In this paper, we introduce and solve the following additive (${\rho}_1,{\rho}_2$)-functional inequality (0.1) $${\parallel}f(x+y+z)-f(x)-f(y)-f(z){\parallel}{\leq}{\parallel}{\rho}_1(f(x+z)-f(x)-f(z)){\parallel}+{\parallel}{\rho}_2(f(y+z)-f(y)-f(z)){\parallel}$$, where ${\rho}_1$ and ${\rho}_2$ are fixed nonzero complex numbers with ${\mid}{\rho}_1{\mid}+{\mid}{\rho}_2{\mid}$ < 2. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the additive (${\rho}_1,{\rho}_2$)-functional inequality (0.1) in complex Banach spaces.

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY BANACH SPACES

  • LEE, SUNG JIN;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.163-179
    • /
    • 2016
  • Let $M_1f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_2f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$ Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_1f(x,y)-{\rho}M_2f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ and (0.2) $N(M_2f(x,y)-{\rho}M_1f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ in fuzzy Banach spaces, where ρ is a fixed real number with ρ ≠ 1.

REMARKS ON THE PAPER: ORTHOGONALLY ADDITIVE AND ORTHOGONALLY QUADRATIC FUNCTIONAL EQUATION

  • Kim, Hark-Mahn;Jun, Kil-Woung;Kim, Ahyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.377-391
    • /
    • 2013
  • The main goal of this paper is to present the additional stability results of the following orthogonally additive and orthogonally quadratic functional equation $$f(\frac{x}{2}+y)+f(\frac{x}{2}-y)+f(\frac{x}{2}+z)+f(\frac{x}{2}-z)=\frac{3}{2}f(x)-\frac{1}{2}f(-x)+f(y)+f(-y)+f(z)+f(-z)$$ for all $x,y,z$ with $x{\bot}y$, which has been introduced in the paper [11], in orthogonality Banach spaces and in non-Archimedean orthogonality Banach spaces.

QUADRATIC (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES

  • Park, Junha;Jo, Younghun;Kim, Jaemin;Kim, Taekseung
    • The Pure and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.179-190
    • /
    • 2017
  • In this paper, we introduce and solve the following quadratic (${\rho}_1$, ${\rho}_2$)-functional inequality (0.1) $$N\left(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y),t\right){\leq}min\left(N({\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y)),t),\;N({\rho}_2(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)),t)\right)$$ in fuzzy normed spaces, where ${\rho}_1$ and ${\rho}_2$ are fixed nonzero real numbers with ${{\frac{1}{{4\left|{\rho}_1\right|}}+{{\frac{1}{{4\left|{\rho}_2\right|}}$ < 1, and f(0) = 0. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (${\rho}_1$, ${\rho}_2$)-functional inequality (0.1) in fuzzy Banach spaces.

ON THE FUZZY STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

  • Lee, Jung-Rye;Jang, Sun-Young;Shin, Dong-Yun
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.65-80
    • /
    • 2010
  • In [17, 18], the fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated. In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations in fuzzy Banach spaces: (0.1) f(x + y) + f(x - y) = 2f(x) + 2f(y), (0.2) f(ax + by) + f(ax - by) = $2a^2 f(x)\;+\;2b^2f(y)$ for nonzero real numbers a, b with $a\;{\neq}\;{\pm}1$.