• Title/Summary/Keyword: 2-Banach spaces

Search Result 254, Processing Time 0.024 seconds

STABILITY OF s-VARIABLE ADDITIVE AND l-VARIABLE QUADRATIC FUNCTIONAL EQUATIONS

  • Govindan, Vediyappan;Pinelas, Sandra;Lee, Jung Rye
    • The Pure and Applied Mathematics
    • /
    • v.29 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form $$f\(\sum\limits_{i=1}^{s}x_i\)+\sum\limits_{j=1}^{s}f\(-sx_j+\sum\limits_{i=1,i{\neq}j}^{s}x_i\)=0$$ and $$f\(\sum\limits_{i=1}^{l}x_i\)+\sum\limits_{j=1}^{l}f\(-lx_j+\sum\limits_{i=1,i{\neq}j}^{l}x_i\)=(l+1)$$$\sum\limits_{i=1,i{\neq}j}^{l}f(x_i-x_j)+(l+1)\sum\limits_{i=1}^{l}f(x_i)$ (s, l ∈ N, s, l ≥ 3) in quasi-Banach spaces.

CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.293-308
    • /
    • 2004
  • Let K be a nonempty convex subset of an arbitrary Banach space X and $T\;:\;K\;{\rightarrow}\;K$ be a uniformly continuous strictly hemi-contractive operator with bounded range. We prove that certain Ishikawa iteration scheme with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. We also establish similar convergence and almost stability results for strictly hemi-contractive operator $T\;:\;K\;{\rightarrow}\;K$, where K is a nonempty convex subset of arbitrary uniformly smooth Banach space X. The convergence results presented in this paper extend, improve and unify the corresponding results in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [3, 4, 5, 6, 7, 8], Chidume & Osilike [9, 10, 11, 12], Liu [19], Schu [25], Tan & Xu [26], Xu [28], Zhou [29], Zhou & Jia [30] and others.

  • PDF

APPROXIMATING RANDOM COMMON FIXED POINT OF RANDOM SET-VALUED STRONGLY PSEUDO-CONTRACTIVE MAPPINGS

  • LI JUN;HUANG NAN JING
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.329-341
    • /
    • 2005
  • In this paper, we introduce new random iterative sequences with errors approximating a unique random common fixed point for three random set-valued strongly pseudo-contractive mappings and show the convergence of the random iterative sequences with errors by using an approximation method in real uniformly smooth separable Banach spaces. As applications, we study the existence of random solutions for some kind of random nonlinear operator equations group in separable Hilbert spaces.

BOUNDED LINEAR FUNCTIONAL ON L1a(B) RELATED WITH $\mathcal{B}_q$q

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2001
  • In this paper, weighted Bloch spaces $\mathcal{B}_q$ are considered on the open unit ball in $\mathbb{C}^n$. In this paper, we will show that every Bloch function in $B_q$ induces a bounded linear functional on $L^1_a(\mathcal{B})$.

  • PDF

STRONG CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATIVE SCHEMES WITH ERRORS IN BANACH SPACES

  • Zeqing Liu;Kim, Jong-Kyu;Park, Hye-Kyeong
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.261-275
    • /
    • 2002
  • Let T be a local strongly accretive operator from a real uniformly smooth Banach space X into itself. It is proved that Ishikawa iterative schemes with errors converge strongly to a unique solution of the equations T$\_$x/ = f and x + T$\_$x/ = f, respectively, and are almost T$\_$b/-stable. The related results deal with the strong convergence and almost T$\_$b/-stability of Ishikawa iterative schemes with errors for local strongly pseudocontractive operators.

ASYMPTOTIC PROPERTIES OF NONEXPANSIVE SEQUENCES IN BANACH SPACES

  • Park, Jong An;Park, Yang Seob
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • B.Djafari Rouhani and W.A.Kirk [3] proved the following theorem: Let Xbe a reflexive Banach space and $(x_n)_{n{\geq}0}$ be a nonexpansive (resp., firmly nonexpansive )sequence in X. Then the set of weak ${\omega}$-limit points of the sequence $(\frac{x_n}{n})_{n{\geq}1}$(resp., $(x_{n+1}-x_n)_{n{\geq}0$) always lies on a convex subset of a sphere centered at the origin of radius $d={\lim}_{n{\rightarrow}{\infty}}\frac{{\parallel}x_n{\parallel}}{n}$. In this paper we show that the above theorem for nonexpansive(resp., firmly nonexpansive) sequences holds in a general Banach space(resp., a strictly convex dual $X^*$).

  • PDF

NORMAL STRUCTURE, FIXED POINTS AND MODULUS OF n-DIMENSIONAL U-CONVEXITY IN BANACH SPACES X AND X*

  • Gao, Ji
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.433-442
    • /
    • 2021
  • Let X and X* be a Banach space and its dual, respectively, and let B(X) and S(X) be the unit ball and unit sphere of X, respectively. In this paper, we study the relation between Modulus of n-dimensional U-convexity in X* and normal structure in X. Some new results about fixed points of nonexpansive mapping are obtained, and some existing results are improved. Among other results, we proved: if X is a Banach space with $U^n_{X^*}(n+1)>1-{\frac{1}{n+1}}$ where n ∈ ℕ, then X has weak normal structure.