STABILITY OF s-VARIABLE ADDITIVE AND l-VARIABLE QUADRATIC FUNCTIONAL EQUATIONS

Vediyappan Govindan ${ }^{\text {a }}$, Sandra Pinelas ${ }^{\text {b }}$ and Jung Rye Lee ${ }^{\text {c,* }}$

Abstract. In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form

$$
f\left(\sum_{i=1}^{s} x_{i}\right)+\sum_{j=1}^{s} f\left(-s x_{j}+\sum_{i=1, i \neq j}^{s} x_{i}\right)=0
$$

and
$f\left(\sum_{i=1}^{l} x_{i}\right)+\sum_{j=1}^{l} f\left(-l x_{j}+\sum_{i=1, i \neq j}^{l} x_{i}\right)=(l+1) \sum_{i=1, i \neq j}^{l} f\left(x_{i}-x_{j}\right)+(l+1) \sum_{i=1}^{l} f\left(x_{i}\right)$
$(s, l \in \mathbb{N}, s, l \geq 3)$ in quasi-Banach spaces.

1. Introduction and Preliminaries

In 1940, Ulam [18] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms. Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist $\delta(\epsilon)>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x * y), h(x)) \diamond h(y)<\delta
$$

for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\epsilon
$$

for all $x \in G_{1}$?

[^0]The Cauchy additive functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1.1}
\end{equation*}
$$

is called additive functional equation. In 1941, Hyers [8] considered the case of approximately additive mappings $f: E \rightarrow E_{1}$, where E and E_{1} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$. It was shown that the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and that $L: E \rightarrow E_{1}$ is the unique additive mapping satisfying

$$
\|L(x)-f(x)\| \leq \epsilon
$$

See $[1,2,3,5,10,11]$ for more information on functional equations and their stability. The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.2}
\end{equation*}
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping (see [6, 12, 13, 14, 15]). A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [17] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [4] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [6] proved the Hyers-Ulam stability of the additive quadratic and cubic functional equation (see [7, 9, 16]).

In this paper we investigate the Hyers-Ulam stability of the s-variable and l variable quadratic functional equations of the form

$$
\begin{equation*}
f\left(\sum_{i=1}^{s} x_{i}\right)+\sum_{j=1}^{s} f\left(-s x_{j}+\sum_{i=1, i \neq j}^{s} x_{i}\right)=0 \tag{1.3}
\end{equation*}
$$

$f\left(\sum_{i=1}^{l} x_{i}\right)+\sum_{j=1}^{l} f\left(-l x_{j}+\sum_{i=1, i \neq j}^{l} x_{i}\right)=(l+1) \sum_{i=1, i \neq j}^{l} f\left(x_{i}-x_{j}\right)+(l+1) \sum_{i=1}^{l} f\left(x_{i}\right)$ $(s, l \in \mathbb{N}, s, l \geq 3)$ in quasi-Banach spaces.

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1 ([1, 13]). Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the following:
(i) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$.
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in R$ and all $x \in X$.
(iii) There is a constant $k \geq 1$ such that $\|x+y\| \leq k(\|x\|+\|y\|)$ for all $x, y \in X$. The pair $(X,\|\cdot\|)$ is called a quasi-normed space if $\|\cdot\|$ is a quasi-norm on X. The smallest possible K is called the modulus of concavity of $\|\cdot\|$. A quasi-Banach space is a complete quasi-normed space.
A quasi-norm $\|\cdot\|$ is called a p-norm $0<p \leq 1$ if

$$
\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$.
In this case, a quasi-Banach space is called a p-Banach space. By the AokiRolewicz theorem [13] (see also [1]), each quasi-norm is equivalent to some p-norm. Since it is much easier to work with p-norms than quasi-norms, henceforth we restrict our attention mainly to p-norms.

2. Stability of s-Variable Additive Functional Equation (1.3)

Assume that X is a quasi-normed space with quasi-norm $\|\cdot\|$ and that Y is a p-Banach space with p-norm $\|\cdot\|$. By using an idea of Gavruta [4], we prove the stability of the functional equation (1.1). For convenience, we use the following abbreviation for a given mapping $f: X \rightarrow Y$

$$
D f\left(x_{1} \ldots, x_{s}\right)=\left(f \sum_{i=1}^{s} x_{i}\right)+\sum_{j=1}^{s} f\left(-s x_{j}+\sum_{i=1, i \neq j}^{s} x_{i}\right)
$$

for all $x_{j} \in X(1 \leq j \leq s)$.
We will use the following lemma.
Lemma 2.1. A mapping $f: X \rightarrow Y$ satisfies (1.3) if and only if if the mapping $f: X \rightarrow Y$ is additive.

Proof. We first assume that the mapping $f: X \rightarrow Y$ satisfies (1.1). Setting $x=y=$ 0 in (1.1), we get $f(0)=0$. Letting $y=-x$ in (1.1), we get $f(-x)=-f(x)$. Thus f is odd. If we replace y by x and x and y by $2 x$ and x in (1.1), we get

$$
f(2 x)=2 f(x), f(3 x)=3 f(x) .
$$

In general for any positive integer s, we obtain

$$
f(s x)=s f(x)
$$

for all $x \in X$. Letting $x=x_{1}+x_{2}, y=x_{3}$ in (1.1), we get

$$
\begin{equation*}
f\left(x_{1}+x_{2}+x_{3}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right) \tag{2.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Replacing x_{3} by $-3 x_{3}$ in (2.1), we get

$$
\begin{equation*}
f\left(x_{1}+x_{2}-3 x_{3}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)-3 f\left(x_{3}\right) \tag{2.2}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Replacing x_{2} by $-3 x_{2}$ in (2.1), we have

$$
\begin{equation*}
f\left(x_{1}-3 x_{2}+x_{3}\right)=f\left(x_{1}\right)-3 f\left(x_{2}\right)+f\left(x_{3}\right) \tag{2.3}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Replacing x_{1} by $-3 x_{1}$ in (2.1), we get

$$
\begin{equation*}
f\left(-3 x_{1}+x_{2}+x_{3}\right)=-3 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right) \tag{2.4}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. It follows from (2.1), (2.2), (2.3) and (2.4) that
(2.5) $f\left(-3 x_{1}+x_{2}+x_{3}\right)+f\left(x_{1}-3 x_{2}+x_{3}\right)+f\left(x_{1}+x_{2}-3 x_{3}\right)+f\left(x_{1}+x_{2}+x_{3}\right)=0$ for all $x_{1}, x_{2}, x_{3} \in X$.

Continuing in this same way by using (2.5) up to s times, we get (1.3).
Letting $x_{1}=x_{2}=\cdots=x_{s}=0$ in (1.3), we get $f(0)=0$. Setting $x_{1}=x_{2}=$ $, \ldots,=x_{s}=x$ and by using (2), we get $f(-x)=-f(x)$. Thus f is odd. Letting $x_{1}=\frac{3 x+y}{8}, x_{2}=\frac{3 y+x}{8}, x_{3}=x_{4}=\cdots=x_{s}=0$ in (1.3), we get

$$
\begin{equation*}
f(-y)+f(-x)+2 f\left(\frac{4 x+4 y}{8}\right)=0 \tag{2.6}
\end{equation*}
$$

for all $x, y \in X$. It follows from (2.6), (2) and the oddness of f that (1.1) holds for all $x \in X$. So the mapping $f: X \rightarrow Y$ is additive.

The converse follows from the additivity.
Theorem 2.2. Let $\varphi: X \times X \times \cdots \times X \rightarrow[0, \infty)$ be a mapping such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{s^{n}} \varphi\left(s^{n} x_{1}, \ldots, s^{n} x_{s}\right)=0 \tag{2.7}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{s} \in X$ and

$$
\begin{equation*}
\tilde{\varphi}:=\sum_{i=0}^{\infty} \frac{1}{s^{i p}}\left(\varphi\left(s^{i} x, \ldots, s^{i} x\right)\right)^{p}<\infty \tag{2.8}
\end{equation*}
$$

for all $x \in X$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D f\left(x_{1}, \ldots, x_{s}\right)\right\| \leq \varphi\left(x_{1}, \ldots, x_{s}\right) \tag{2.9}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{s} \in X$. Then the limit

$$
\begin{equation*}
A(x)=\lim _{n \rightarrow \infty} \frac{1}{s^{n}} f\left(s^{n} x\right) \tag{2.10}
\end{equation*}
$$

exists for all $x \in X$ and the mapping $A: X \rightarrow Y$ is a unique additive mapping satisfying

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{s}[\tilde{\varphi}(x)]^{\bar{p}} \tag{2.11}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x_{1}=x_{2}=\cdots=x_{s}=x$ in (1.3), we get

$$
\begin{equation*}
\|f(s x)-s f(x)\| \leq \varphi(\underbrace{x, x, \ldots, x}_{s-\text { times }}) \tag{2.12}
\end{equation*}
$$

for all $x \in X$. Replacing x by $s^{n} x$ in (2.12) and dividing both sides of (2.12) by s^{n+1}, we get

$$
\begin{equation*}
\left\|\frac{1}{s^{n+1}} f\left(s^{n+1} x\right)-\frac{1}{s^{n}} f\left(s^{n} x\right)\right\| \leq \frac{1}{s^{n+1}} \varphi(\underbrace{s^{n} x, \ldots, s^{n} x}_{s-\text { times }}) \tag{2.13}
\end{equation*}
$$

for all $x \in X$ and all nonnegative integers n. Since Y is p-Banach space, we have

$$
\begin{align*}
& \left\|\frac{1}{s^{n+1}} f\left(s^{n+1} x\right)-\frac{1}{s^{r}} f\left(s^{r} x\right)\right\|^{p}
\end{align*} \leq \sum_{i=r}^{n} \frac{1}{s^{n+1}}\left\|\frac{1}{s^{i+1}} f\left(s^{i+1} x\right)-\frac{1}{s^{i}} f\left(s^{i} x\right)\right\|^{p} \varphi(\underbrace{s^{n} x, \ldots, s^{n} x}_{s-\text { times }})
$$

for all $x \in X$ and all nonnegative integers n and r with $n \geq r$. Therefore, we conclude from (2.9) and (2.14) that the sequence $\left\{\frac{1}{s^{n}} f\left(s^{n} x\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{s^{n}} f\left(s^{n} x\right)\right\}$ converges in Y for all $x \in X$. So one can define the mapping $A: X \rightarrow Y$ by

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} \frac{1}{s^{n}} f\left(s^{n} x\right) \tag{2.15}
\end{equation*}
$$

for all $x \in X$. Letting $r=0$ and passing the limit $n \rightarrow \infty$ in (2.14), we get (2.11). Now, we show that A is an additive mapping. It follows from (2.8), (2.10) and (2.15) that

$$
\left\|D A\left(x_{1}, \ldots, x_{s}\right)\right\|=\lim _{n \rightarrow \infty} \frac{1}{s^{n}}\left\|D f\left(s^{n} x_{1}, \ldots, s^{n} x_{s}\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{1}{s^{n}} \varphi\left(s^{n} x_{1}, \ldots, s^{n} x_{s}\right)=0
$$

for all $x_{s} \in X$. Hence the mapping A satisfies (1.3). So by Lemma 2.1, the mapping $x \rightarrow A(x)$ is additive.

To prove the uniqueness of A, let $B: X \rightarrow Y$ be another additive mapping satisfying (2.11). It follows from (2.11) and (2.15) that

$$
\|A(x)-B(x)\|^{p}=\lim _{n \rightarrow \infty} \frac{1}{s^{n p}}\left\|f\left(s^{n} x\right)-B\left(s^{n} x\right)\right\|^{p} \leq \frac{1}{s^{p}} \lim _{n \rightarrow \infty} \tilde{\varphi}\left(s^{n} x\right)=0
$$

for all $x \in X$. So $A=B$.
Theorem 2.3. Let $\varphi: X \times X \times \cdots \times X \rightarrow[0, \infty)$ be a mapping such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} s^{n} \varphi\left(\frac{x_{1}}{s^{n}}, \ldots, \frac{x_{s}}{s^{n}}\right)=0 \tag{2.16}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{s} \in X$ and

$$
\begin{equation*}
\tilde{\varphi}:=\sum_{i=0}^{\infty} \frac{1}{s^{i p}}\left(\varphi\left(\frac{x}{s^{i}}, \ldots, \frac{x}{s^{i}}\right)\right)^{p}<\infty \tag{2.17}
\end{equation*}
$$

for all $x \in X$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D f\left(x_{1}, \ldots, x_{s}\right)\right\| \leq \varphi\left(x_{1}, \ldots, x_{s}\right) \tag{2.18}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{s} \in X$. Then the limit

$$
\begin{equation*}
A(x)=\lim _{n \rightarrow \infty} s^{n} f\left(\frac{x}{s^{n}}\right) \tag{2.19}
\end{equation*}
$$

exists for all $x \in X$ and the mapping $A: X \rightarrow Y$ is a unique additive mapping satisfying

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{s}[\tilde{\varphi}(x)]^{\frac{1}{p}} \tag{2.20}
\end{equation*}
$$

for all $x \in X$.
Proof. The proof is similar to the proof of Theorem 2.2.
Corollary 2.4. Let $\beta, r_{j}(1 \leq j \leq s)$ be nonnegative real numbers such that $r_{j}>1$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D f\left(x_{1}, \ldots, x_{s}\right)\right\| \leq \beta \sum_{i=1}^{s}\left\|x_{i}\right\|^{r_{i}}
$$

for all $x_{j} \in X(1 \leq j \leq s)$. Then there exists a unique additive mapping $A: X \rightarrow Y$ satisfying

$$
\|f(x)-A(x)\| \leq \frac{n \beta}{\left\|s^{p}-s^{p r_{1}}\right\|}\|x\|^{r_{1}}
$$

for all $x \in X$.
Proof. The result follows from Theorems 2.2 and 2.3.

Corollary 2.5. Let $\beta, r_{j}(1 \leq j \leq s)$ be nonnegative real numbers such that $r_{j}>1$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D f\left(x_{1}, \ldots, x_{s}\right)\right\| \leq \beta \prod_{i=1}^{s}\left\|x_{i}\right\|^{r_{i}}
$$

for all $x_{j} \in X(1 \leq j \leq s)$. Then the mapping $f: X \rightarrow Y$ is additive.
Proof. The result follows from Theorems 2.2 and 2.3.

3. Stability of l-variable Quadratic Functional Equation (1.4)

In this section, we investigated the general solution and the Hyers-Ulamstability of the functional equation (1.4).

Lemma 3.1. A mapping $f: X \rightarrow Y$ satisfies (1.4) if and only if the mapping $f: X \rightarrow Y$ is quadratic.

Proof. A mapping $f: X \rightarrow Y$ satisfies the functional equation (1.4). Letting $x_{1}=$ $x_{2}=\cdots=x_{l}=0$ in (1.4), we get $f(0)=0$. Letting $x_{1}=x, x_{2}=\cdots=x_{l}=0$ in (1.4), we get $f(-x)=f(x)$ and so f is an even mapping. Letting $x_{1}=0, x_{2}=$ $x, x_{3}=\cdots=x_{l}=0$ in (1.4), we get

$$
\begin{equation*}
l f(x)+f(l x)=l(l+1) f(x) \tag{3.1}
\end{equation*}
$$

for all $x \in X$. It follows from (3.1) that

$$
f(l x)=l^{2} f(x)
$$

for all $x \in X$. Letting $x_{1}=x, x_{2}=y, x_{3}=\cdots=x_{l}=0$ in (1.4), we have

$$
\begin{equation*}
2 f(x+y)+f(-3 x+y)+f(x-3 y)=4(f(x-y))+8 f(x)+8 f(y) \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$. It follows from (3.2) and (1.2) that

$$
f(x+y)+f(-x+y)=2 f(x)+2 f(y)
$$

for all $x, y \in X$. Therefore the mapping $f: X \rightarrow Y$ is quadratic.
The converse is similar to the proof of Lemma 2.1.
Theorem 3.2. Let $\varphi: X \times X \times \cdots \times X \rightarrow[0, \infty)$ be a mapping such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{l^{2 n}} \varphi(\underbrace{l^{n} x_{1}, \cdots, l^{n} x_{l}}_{l-\text { times }})=0 \tag{3.3}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{l} \in X$ and

$$
\begin{equation*}
\tilde{\varphi(x)}:=\sum_{i=0}^{\infty} \frac{1}{l^{2 i p}}\left(\varphi\left(l^{i} x, \ldots, l^{i} x\right)\right)^{p}<\infty \tag{3.4}
\end{equation*}
$$

for all $x \in X$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D f\left(x_{1}, \ldots, x_{l}\right)\right\| \leq \varphi\left(x_{1}, \ldots, x_{l}\right) \tag{3.5}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{l} \in X$. Then the limit

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} l^{2 n} f\left(l^{n} x\right) \tag{3.6}
\end{equation*}
$$

exists for all $x \in X$ and the mapping $Q: X \rightarrow Y$ is a unique quadratic mapping satisfying

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{l^{2}}[\tilde{\varphi}(x)]^{\frac{1}{p}} \tag{3.7}
\end{equation*}
$$

for all $x \in X$.
Proof. The proof is similar to the proof of Theorem 2.2.
Theorem 3.3. Let $\varphi: \underbrace{X \times X \times \cdots \times X}_{l-\text { times }} \rightarrow[0, \infty)$ be a mapping such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} l^{2 n} \varphi\left(\frac{x_{1}}{l^{n}}, \ldots, \frac{x_{l}}{l^{n}}\right)=0 \tag{3.8}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{l} \in X$ and

$$
\begin{equation*}
\tilde{\varphi(x)}:=\sum_{i=0}^{\infty} l^{2 i p}\left(\varphi\left(\frac{x}{l^{i}}, \ldots, \frac{x}{l^{i}}\right)\right)^{p}<\infty \tag{3.9}
\end{equation*}
$$

for all $x \in X$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D f\left(x_{1}, \ldots, x_{l}\right)\right\| \leq \varphi\left(x_{1}, \ldots, x_{l}\right) \tag{3.10}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{l} \in X$. Then the limit

$$
Q(x):=\lim _{n \rightarrow \infty} l^{2 n} f\left(\frac{x}{l^{n}}\right)
$$

exists for all $x \in X$ and the mapping $Q: X \rightarrow Y$ is a unique quadratic mapping satisfying

$$
\|f(x)-Q(x)\| \leq \frac{1}{l^{2}}[\tilde{\varphi}(x)]^{\frac{1}{p}}
$$

for all $x \in X$.

Corollary 3.4. Let $\beta, r_{j}(1 \leq j \leq l)$ be nonnegative real numbers such that $r_{j}>1$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D f\left(x_{1}, \ldots, x_{s}\right)\right\| \leq \beta \sum_{i=1}^{l}\left\|x_{i}\right\|^{r_{i}}
$$

for all $x_{j} \in X(1 \leq j \leq s)$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ satisfying

$$
\|f(x)-Q(x)\| \leq \frac{n \beta}{\left\|l^{2 p}-l^{2 p r_{1}}\right\|^{\frac{1}{p}}}\|x\|^{r_{1}}
$$

for all $x \in X$.
Proof. The result follows from Theorems 3.2 and 3.3.
Corollary 3.5. Let $\beta, r_{j}(1 \leq j \leq s)$ be nonnegative real numbers such that $r_{j}>1$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D f\left(x_{1}, \ldots, x_{l}\right)\right\| \leq \beta \prod_{i=1}^{l}\left\|x_{i}\right\|^{r_{i}}
$$

for all $x_{j} \in X(1 \leq j \leq l)$. Then the mapping $f: X \rightarrow Y$ is quadratic.
Proof. The result follows from Theorems 3.2 and 3.3.

Competing Interests

The authors declare that they have no competing interests.

References

1. J. Aczel \& J. Dhombres: Functional Equations in Several Variables. Cambridge University Press, Cambridge, 1989.
2. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
3. Y. Benyamini \& J. Lindenstrauss: Geometric Nonlinear Functional Analysis. vol. 1, Am. Math. Soc. Colloq. Publ. 48, Am. Math. Soc., Providence, RI, 2000.
4. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.
5. Y. Cho, C. Park \& R. Saadati: Functional inequalities in non-Archimedean Banach spaces. Appl. Math. Lett. 60 (2010), 1994-2002.
6. S. Czerwik: On the stability of the quadratic mapping in normed spaces. Abh. Aus. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
7. V. Govindan, S. Murthy \& M. Saravanan: Solution and stability of a cubic type functional equation: Using direct and fixed point methods, Kragujevac J. Math. 44 (2020), 7-26.
8. D.H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
9. A. Najati \& G.Z. Eskandani: Stability of a mixed additive and cubic functional equation in quasi-Banach spaces. J. Math. Anal. Appl. 342 (2008), 1318-1331.
10. C. Park: Isomorphisms between quasi-Banach algebras. Chin. Ann. Math. Ser. B 28 (2007), 353-362.
11. C. Park: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. Bull. Sci. Math. 132 (2008), 87-96.
12. C. Park \& Th. M. Rassias: Homomorphisms and derivations in proper JCQ-triples. J. Math. Anal. Appl. 337 (2008), 1404-1414.
13. S. Pinelas \& V. Govindan: Stability of a quartic functional equation. J. Fixed Point Theory Appl. 20 (2018), Art. No. 148. https://doi.org/10.1007/s11784-018-0629-z.
14. Th.M. Rassias: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62 (2000), 23-130.
15. Th.M. Rassias \& P. S̆emrl: On the Hyers-Ulam stability of linear mappings. J. Math. Anal. Appl. 173 (1993), 325-338.
16. S. Rolewicz: Metric Linear Spaces. PWN - Polish Sci. Publ., Warszawa, 1984.
17. F. Skof: Proprieta locali e approssimazione di operatori. Rend. Semin. Mat. Fis. Milano 53 (1983),113-129.
18. S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ., New York, 1960.
${ }^{\text {a }}$ Department of Mathematics, DMi St John Baptist University, Mangochi, Malawi
Email address: govindoviya@gmail.com
${ }^{\text {b }}$ Departamento de Ciências Exatas e Engenharia, Academia Militar, Portugal
Email address: sandra.pinelas@gmail.com
${ }^{c}$ Department of Data Science, Daejin University, Kyunggi 11159, Korea
Email address: jrlee@daejin.ac.kr

[^0]: Received by the editors April 09, 2022. Revised April 27, 2022. Accepted April 28, 2022. 2010 Mathematics Subject Classification. Primary 39B82, 39B62, 39B52.
 Key words and phrases. Hyers-Ulam stability, additive and quadratic mapping, quasi-Banach space, p-Banach space.
 *Corresponding author.

