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STABILITY OF s-VARIABLE ADDITIVE AND l-VARIABLE

QUADRATIC FUNCTIONAL EQUATIONS

Vediyappan Govindan a, Sandra Pinelas b and Jung Rye Lee c, ∗

Abstract. In this paper we investigate the Hyers-Ulam stability of the s-variable
additive and l-variable quadratic functional equations of the form

f

(
s∑

i=1

xi

)
+

s∑
j=1

f

−sxj +

s∑
i=1,i ̸=j

xi

 = 0

and

f

(
l∑

i=1

xi

)
+

l∑
j=1

f

−lxj +

l∑
i=1,i ̸=j

xi

 = (l+1)

l∑
i=1,i ̸=j

f(xi−xj)+(l+1)

l∑
i=1

f(xi)

(s, l ∈ N, s, l ≥ 3) in quasi-Banach spaces.

1. Introduction and Preliminaries

In 1940, Ulam [18] gave a talk before the Mathematics Club of the University of

Wisconsin in which he discussed a number of unsolved problems. Among these was

the following question concerning the stability of homomorphisms. Let (G1, ∗) be a

group and let (G2, ⋄, d) be a metric group with the metric d(·, ·). Given ϵ > 0, does

there exist δ(ϵ) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x)) ⋄ h(y) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ϵ

for all x ∈ G1?
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The Cauchy additive functional equation

(1.1) f(x+ y) = f(x) + f(y)

is called additive functional equation. In 1941, Hyers [8] considered the case of

approximately additive mappings f : E → E1, where E and E1 are Banach spaces

and f satisfies Hyers inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and that L : E → E1 is the unique additive mapping satisfying

∥L(x)− f(x)∥ ≤ ϵ.

See [1, 2, 3, 5, 10, 11] for more information on functional equations and their stability.

The functional equation

(1.2) f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the qua-

dratic functional equation is said to be a quadratic mapping (see [6, 12, 13, 14, 15]).

A Hyers-Ulam stability problem for the quadratic functional equation was proved

by Skof [17] for mappings f : X → Y , where X is a normed space and Y is a Ba-

nach space. Cholewa [4] noticed that the theorem of Skof is still true if the relevant

domain X is replaced by an Abelian group. Czerwik [6] proved the Hyers-Ulam

stability of the additive quadratic and cubic functional equation (see [7, 9, 16]).

In this paper we investigate the Hyers-Ulam stability of the s-variable and l-

variable quadratic functional equations of the form

(1.3) f

(
s∑

i=1

xi

)
+

s∑
j=1

f

−sxj +
s∑

i=1,i ̸=j

xi

 = 0

(1.4)

f

(
l∑

i=1

xi

)
+

l∑
j=1

f

−lxj +

l∑
i=1,i ̸=j

xi

 = (l+1)

l∑
i=1,i ̸=j

f(xi−xj)+ (l+1)

l∑
i=1

f(xi)

(s, l ∈ N, s, l ≥ 3) in quasi-Banach spaces.

We recall some basic facts concerning quasi-Banach spaces and some preliminary

results.
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Definition 1.1 ([1, 13]). Let X be a real linear space. A quasi-norm is a real-valued

function on X satisfying the following:

(i) ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0.

(ii) ∥λx∥ = |λ|∥x∥ for all λ ∈ R and all x ∈ X.

(iii) There is a constant k ≥ 1 such that ∥x+ y∥ ≤ k(∥x∥+ ∥y∥) for all x, y ∈ X.

The pair (X, ∥ · ∥) is called a quasi-normed space if ∥ · ∥ is a quasi-norm on X. The

smallest possible K is called the modulus of concavity of ∥ · ∥. A quasi-Banach space

is a complete quasi-normed space.

A quasi-norm ∥ · ∥ is called a p-norm 0 < p ≤ 1 if

∥x+ y∥p ≤ ∥x∥p + ∥y∥p

for all x, y ∈ X.

In this case, a quasi-Banach space is called a p-Banach space. By the Aoki-

Rolewicz theorem [13] (see also [1]), each quasi-norm is equivalent to some p-norm.

Since it is much easier to work with p-norms than quasi-norms, henceforth we restrict

our attention mainly to p-norms.

2. Stability of s-variable Additive Functional Equation (1.3)

Assume that X is a quasi-normed space with quasi-norm ∥ · ∥ and that Y is a

p-Banach space with p-norm ∥ · ∥. By using an idea of Gavruta [4], we prove the

stability of the functional equation (1.1). For convenience, we use the following

abbreviation for a given mapping f : X → Y

Df(x1 . . . , xs) =

(
f

s∑
i=1

xi

)
+

s∑
j=1

f

−sxj +

s∑
i=1,i ̸=j

xi


for all xj ∈ X(1 ≤ j ≤ s).

We will use the following lemma.

Lemma 2.1. A mapping f : X → Y satisfies (1.3) if and only if if the mapping

f : X → Y is additive.

Proof. We first assume that the mapping f : X → Y satisfies (1.1). Setting x = y =

0 in (1.1), we get f(0) = 0. Letting y = −x in (1.1), we get f(−x) = −f(x). Thus

f is odd. If we replace y by x and x and y by 2x and x in (1.1), we get

f(2x) = 2f(x), f(3x) = 3f(x).
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In general for any positive integer s, we obtain

f(sx) = sf(x)

for all x ∈ X. Letting x = x1 + x2, y = x3 in (1.1), we get

(2.1) f(x1 + x2 + x3) = f(x1) + f(x2) + f(x3)

for all x1, x2, x3 ∈ X. Replacing x3 by −3x3 in (2.1), we get

(2.2) f(x1 + x2 − 3x3) = f(x1) + f(x2)− 3f(x3)

for all x1, x2, x3 ∈ X. Replacing x2 by −3x2 in (2.1), we have

(2.3) f(x1 − 3x2 + x3) = f(x1)− 3f(x2) + f(x3)

for all x1, x2, x3 ∈ X. Replacing x1 by −3x1 in (2.1), we get

(2.4) f(−3x1 + x2 + x3) = −3f(x1) + f(x2) + f(x3)

for all x1, x2, x3 ∈ X. It follows from (2.1), (2.2), (2.3) and (2.4) that

(2.5) f(−3x1+x2+x3)+f(x1−3x2+x3)+f(x1+x2−3x3)+f(x1+x2+x3) = 0

for all x1, x2, x3 ∈ X.

Continuing in this same way by using (2.5) up to s times, we get (1.3).

Letting x1 = x2 = · · · = xs = 0 in (1.3), we get f(0) = 0. Setting x1 = x2 =

, . . . ,= xs = x and by using (2), we get f(−x) = −f(x). Thus f is odd. Letting

x1 =
3x+y
8 , x2 =

3y+x
8 , x3 = x4 = · · · = xs = 0 in (1.3), we get

(2.6) f(−y) + f(−x) + 2f

(
4x+ 4y

8

)
= 0

for all x, y ∈ X. It follows from (2.6), (2) and the oddness of f that (1.1) holds for

all x ∈ X. So the mapping f : X → Y is additive.

The converse follows from the additivity. �

Theorem 2.2. Let φ : X ×X × · · · ×X → [0,∞) be a mapping such that

(2.7) lim
n→∞

1

sn
φ(snx1, . . . , s

nxs) = 0

for all x1, x2, · · · , xs ∈ X and

(2.8) φ̃ :=
∞∑
i=0

1

sip
(
φ(six, . . . , six)

)p
< ∞

for all x ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

(2.9) ∥Df(x1, . . . , xs)∥ ≤ φ(x1, . . . , xs)
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for all x1, x2, · · · , xs ∈ X. Then the limit

(2.10) A(x) = lim
n→∞

1

sn
f(snx)

exists for all x ∈ X and the mapping A : X → Y is a unique additive mapping

satisfying

(2.11) ∥f(x)−A(x)∥ ≤ 1

s
[φ̃(x)]p̄

for all x ∈ X.

Proof. Letting x1 = x2 = · · · = xs = x in (1.3), we get

(2.12) ∥f(sx)− sf(x)∥ ≤ φ(x, x, . . . , x︸ ︷︷ ︸
s−times

)

for all x ∈ X. Replacing x by snx in (2.12) and dividing both sides of (2.12) by

sn+1, we get

(2.13)

∥∥∥∥ 1

sn+1
f(sn+1x)− 1

sn
f(snx)

∥∥∥∥ ≤ 1

sn+1
φ(snx, . . . , snx︸ ︷︷ ︸

s−times

)

for all x ∈ X and all nonnegative integers n. Since Y is p-Banach space, we have∥∥∥∥ 1

sn+1
f(sn+1x)− 1

sr
f(srx)

∥∥∥∥p ≤ n∑
i=r

1

sn+1

∥∥∥∥ 1

si+1
f(si+1x)− 1

si
f(six)

∥∥∥∥pφ(snx, . . . , snx︸ ︷︷ ︸
s−times

)

≤ 1

sip
(φ(six, . . . , six))p(2.14)

for all x ∈ X and all nonnegative integers n and r with n ≥ r. Therefore, we

conclude from (2.9) and (2.14) that the sequence
{

1
sn f(s

nx)
}
is a Cauchy sequence

in Y for all x ∈ X. Since Y is complete, the sequence
{

1
sn f(s

nx)
}
converges in Y

for all x ∈ X. So one can define the mapping A : X → Y by

(2.15) A(x) := lim
n→∞

1

sn
f(snx)

for all x ∈ X. Letting r = 0 and passing the limit n → ∞ in (2.14), we get (2.11).

Now, we show that A is an additive mapping. It follows from (2.8), (2.10) and (2.15)

that

∥DA(x1, . . . , xs)∥ = lim
n→∞

1

sn
∥Df(snx1, . . . , s

nxs)∥ ≤ lim
n→∞

1

sn
φ(snx1, . . . , s

nxs) = 0

for all xs ∈ X. Hence the mapping A satisfies (1.3). So by Lemma 2.1, the mapping

x → A(x) is additive.
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To prove the uniqueness of A, let B : X → Y be another additive mapping

satisfying (2.11). It follows from (2.11) and (2.15) that

∥A(x)−B(x)∥p = lim
n→∞

1

snp
∥f(snx)−B(snx)∥p ≤ 1

sp
lim
n→∞

φ̃(snx) = 0

for all x ∈ X. So A = B. �

Theorem 2.3. Let φ : X ×X × · · · ×X → [0,∞) be a mapping such that

(2.16) lim
n→∞

snφ
(x1
sn

, . . . ,
xs
sn

)
= 0

for all x1, x2, · · · , xs ∈ X and

(2.17) φ̃ :=

∞∑
i=0

1

sip

(
φ
( x
si
, . . . ,

x

si

))p
< ∞

for all x ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

(2.18) ∥Df(x1, . . . , xs)∥ ≤ φ(x1, . . . , xs)

for all x1, x2, · · · , xs ∈ X. Then the limit

(2.19) A(x) = lim
n→∞

snf
( x

sn

)
exists for all x ∈ X and the mapping A : X → Y is a unique additive mapping

satisfying

(2.20) ∥f(x)−A(x)∥ ≤ 1

s
[φ̃(x)]

1
p

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 2.2. �

Corollary 2.4. Let β, rj(1 ≤ j ≤ s) be nonnegative real numbers such that rj > 1.

Suppose that a mapping f : X → Y satisfies the inequality

∥Df(x1, . . . , xs)∥ ≤ β

s∑
i=1

∥xi∥ri

for all xj ∈ X(1 ≤ j ≤ s). Then there exists a unique additive mapping A : X → Y

satisfying

∥f(x)−A(x)∥ ≤ nβ

∥sp − spr1∥
∥x∥r1

for all x ∈ X.

Proof. The result follows from Theorems 2.2 and 2.3. �
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Corollary 2.5. Let β, rj(1 ≤ j ≤ s) be nonnegative real numbers such that rj > 1.

Suppose that a mapping f : X → Y satisfies the inequality

∥Df(x1, . . . , xs)∥ ≤ β

s∏
i=1

∥xi∥ri

for all xj ∈ X(1 ≤ j ≤ s). Then the mapping f : X → Y is additive.

Proof. The result follows from Theorems 2.2 and 2.3. �

3. Stability of l-variable Quadratic Functional Equation (1.4)

In this section, we investigated the general solution and the Hyers-Ulamstability

of the functional equation (1.4).

Lemma 3.1. A mapping f : X → Y satisfies (1.4) if and only if the mapping

f : X → Y is quadratic.

Proof. A mapping f : X → Y satisfies the functional equation (1.4). Letting x1 =

x2 = · · · = xl = 0 in (1.4), we get f(0) = 0. Letting x1 = x, x2 = · · · = xl = 0

in (1.4), we get f(−x) = f(x) and so f is an even mapping. Letting x1 = 0, x2 =

x, x3 = · · · = xl = 0 in (1.4), we get

(3.1) lf(x) + f(lx) = l(l + 1)f(x)

for all x ∈ X. It follows from (3.1) that

f(lx) = l2f(x)

for all x ∈ X. Letting x1 = x, x2 = y, x3 = · · · = xl = 0 in (1.4), we have

(3.2) 2f(x+ y) + f(−3x+ y) + f(x− 3y) = 4(f(x− y)) + 8f(x) + 8f(y)

for all x, y ∈ X. It follows from (3.2) and (1.2) that

f(x+ y) + f(−x+ y) = 2f(x) + 2f(y)

for all x, y ∈ X. Therefore the mapping f : X → Y is quadratic.

The converse is similar to the proof of Lemma 2.1. �

Theorem 3.2. Let φ : X ×X × · · · ×X → [0,∞) be a mapping such that

(3.3) lim
n→∞

1

l2n
φ

lnx1, · · · , lnxl︸ ︷︷ ︸
l−times

 = 0



186 Vediyappan Govindan, Sandra Pinelas & Jung Rye Lee

for all x1, x2, · · · , xl ∈ X and

(3.4) ˜φ(x) :=
∞∑
i=0

1

l2ip
(
φ(lix, . . . , lix)

)p
< ∞

for all x ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

(3.5) ∥Df(x1, . . . , xl)∥ ≤ φ(x1, . . . , xl)

for all x1, x2, · · · , xl ∈ X. Then the limit

(3.6) Q(x) = lim
n→∞

l2nf (lnx)

exists for all x ∈ X and the mapping Q : X → Y is a unique quadratic mapping

satisfying

(3.7) ∥f(x)−Q(x)∥ ≤ 1

l2
[φ̃(x)]

1
p

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 2.2. �

Theorem 3.3. Let φ : X ×X × · · · ×X︸ ︷︷ ︸
l−times

→ [0,∞) be a mapping such that

(3.8) lim
n→∞

l2nφ
(x1
ln

, . . . ,
xl
ln

)
= 0

for all x1, x2, · · · , xl ∈ X and

(3.9) ˜φ(x) :=
∞∑
i=0

l2ip
(
φ
(x
li
, . . . ,

x

li

))p
< ∞

for all x ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

(3.10) ∥Df(x1, . . . , xl)∥ ≤ φ(x1, . . . , xl)

for all x1, x2, · · · , xl ∈ X. Then the limit

Q(x) := lim
n→∞

l2nf
( x

ln

)
exists for all x ∈ X and the mapping Q : X → Y is a unique quadratic mapping

satisfying

∥f(x)−Q(x)∥ ≤ 1

l2
[φ̃(x)]

1
p

for all x ∈ X.
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Corollary 3.4. Let β, rj(1 ≤ j ≤ l) be nonnegative real numbers such that rj > 1.

Suppose that a mapping f : X → Y satisfies the inequality

∥Df(x1, . . . , xs)∥ ≤ β
l∑

i=1

∥xi∥ri

for all xj ∈ X(1 ≤ j ≤ s). Then there exists a unique quadratic mapping Q : X → Y

satisfying

∥f(x)−Q(x)∥ ≤ nβ

∥l2p − l2pr1∥
1
p

∥x∥r1

for all x ∈ X.

Proof. The result follows from Theorems 3.2 and 3.3. �

Corollary 3.5. Let β, rj(1 ≤ j ≤ s) be nonnegative real numbers such that rj > 1.

Suppose that a mapping f : X → Y satisfies the inequality

∥Df(x1, . . . , xl)∥ ≤ β

l∏
i=1

∥xi∥ri

for all xj ∈ X(1 ≤ j ≤ l). Then the mapping f : X → Y is quadratic.

Proof. The result follows from Theorems 3.2 and 3.3. �
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