• Title/Summary/Keyword: 2 order system

Search Result 14,807, Processing Time 0.052 seconds

Improved Social Network Analysis Method in SNS (SNS에서의 개선된 소셜 네트워크 분석 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Kwon, Kyung-Lag;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.117-127
    • /
    • 2012
  • Due to the recent expansion of the Web 2.0 -based services, along with the widespread of smartphones, online social network services are being popularized among users. Online social network services are the online community services which enable users to communicate each other, share information and expand human relationships. In the social network services, each relation between users is represented by a graph consisting of nodes and links. As the users of online social network services are increasing rapidly, the SNS are actively utilized in enterprise marketing, analysis of social phenomenon and so on. Social Network Analysis (SNA) is the systematic way to analyze social relationships among the members of the social network using the network theory. In general social network theory consists of nodes and arcs, and it is often depicted in a social network diagram. In a social network diagram, nodes represent individual actors within the network and arcs represent relationships between the nodes. With SNA, we can measure relationships among the people such as degree of intimacy, intensity of connection and classification of the groups. Ever since Social Networking Services (SNS) have drawn increasing attention from millions of users, numerous researches have made to analyze their user relationships and messages. There are typical representative SNA methods: degree centrality, betweenness centrality and closeness centrality. In the degree of centrality analysis, the shortest path between nodes is not considered. However, it is used as a crucial factor in betweenness centrality, closeness centrality and other SNA methods. In previous researches in SNA, the computation time was not too expensive since the size of social network was small. Unfortunately, most SNA methods require significant time to process relevant data, and it makes difficult to apply the ever increasing SNS data in social network studies. For instance, if the number of nodes in online social network is n, the maximum number of link in social network is n(n-1)/2. It means that it is too expensive to analyze the social network, for example, if the number of nodes is 10,000 the number of links is 49,995,000. Therefore, we propose a heuristic-based method for finding the shortest path among users in the SNS user graph. Through the shortest path finding method, we will show how efficient our proposed approach may be by conducting betweenness centrality analysis and closeness centrality analysis, both of which are widely used in social network studies. Moreover, we devised an enhanced method with addition of best-first-search method and preprocessing step for the reduction of computation time and rapid search of the shortest paths in a huge size of online social network. Best-first-search method finds the shortest path heuristically, which generalizes human experiences. As large number of links is shared by only a few nodes in online social networks, most nods have relatively few connections. As a result, a node with multiple connections functions as a hub node. When searching for a particular node, looking for users with numerous links instead of searching all users indiscriminately has a better chance of finding the desired node more quickly. In this paper, we employ the degree of user node vn as heuristic evaluation function in a graph G = (N, E), where N is a set of vertices, and E is a set of links between two different nodes. As the heuristic evaluation function is used, the worst case could happen when the target node is situated in the bottom of skewed tree. In order to remove such a target node, the preprocessing step is conducted. Next, we find the shortest path between two nodes in social network efficiently and then analyze the social network. For the verification of the proposed method, we crawled 160,000 people from online and then constructed social network. Then we compared with previous methods, which are best-first-search and breath-first-search, in time for searching and analyzing. The suggested method takes 240 seconds to search nodes where breath-first-search based method takes 1,781 seconds (7.4 times faster). Moreover, for social network analysis, the suggested method is 6.8 times and 1.8 times faster than betweenness centrality analysis and closeness centrality analysis, respectively. The proposed method in this paper shows the possibility to analyze a large size of social network with the better performance in time. As a result, our method would improve the efficiency of social network analysis, making it particularly useful in studying social trends or phenomena.

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

The meaning based on Yin-Yang and Five Elements Principle in Semantic Landscape Composition of 'the Forty Eight Poems of Soswaewon' ('소쇄원(瀟灑園) 48영'의 의미경관 구성에 있어서 음양오행론적(陰陽五行論的) 의미(意味))

  • Jang, Il-Young;Shin, Sang-Sup
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.43-57
    • /
    • 2013
  • The purpose of this study is to identify potential semantic landscape makeup of "the Forty Eight Poems of Soswaewon" according to Yin-Yang and Five Elements Principle(陰陽五行論). that speculation system between human's nature and cosmical universal order. Existing academic discussions made so far concerning this topic can be summed up as follows: 1. Among Yin-Yang-based landscape makeups of the Forty Eight Poems of Soswaewon, poetic writings for embodiment of interactions between nature and human behaviors focused on depicting dynamic aspects of a poetic narrator when he appreciates or explores hills and streams as of to live free from worldly cares. Primarily, many of those writings were created on the east and south primarily through assignment of yang. On the other hand, poetic writings for embodiment of nature and seasonal scenery - as static landscape makeup of yin - were often created on or near the north and west for many times. Those writings focusing on embodiment of nature and artificial scenery as a work are divided into two categories: One category refers to author Kim In-hu's expression of semantic landscape from seasonal scenery in nature. The other refers to his depiction of realistic garden images as they are. In the Forty Eight Poems of Soswaewon, the poetic writings show that author Kim focused on embodying seasonal scenery rather than expressing human behaviors. In addition, both Poem No. 1 and Poem No. 48(last poem; titled 'Jangwon Jeyeong') were created in a same place, which author Kim sought to understand the place as a space of beginning and end where yin and yang - i.e. the principle of natural cycle - are inherent. 2. According to construction about landscape in the Forty Eight Poems of Soswaewon on the basis of Ohaeng-ron (five natural element principle), it was found that tree(木) and fire(火) are typical examples of a world combined by emanation. First, many of poetic writings depicting the sentiments of tree focused on embodying seasonal scenery and were located in the place of Ogogmun(五曲門) area in the east, from overall perspective of Soswaewon. The content of these poems shows generation and curve / straightness in flexibility and simplicity. Many of poems depicting the sentiments of fire(火) focused on embodying human behaviors, and they were created in Aeyangdan area on the south of Soswaewon over which sun rises at noon. These poems are all on a status of side movement that is characterized by emanation and ascension which belong to attributes of yang. 3. With regard to Ohaeng-ron's interpretation about landscape in the Forty Eight Poems of Soswaewon, it was found that metal(金) and water(水) are typical examples of world combined by convergence. First, it was found that all of poems depicting sentiments of metal focused on embodying seasonal scenery, and were created in a bamboo grove area on the west from overall perspective of Soswaewon. They represent scenery of autumn among 4 seasons to symbolize faithfulness vested in a man of virtue(seonbi) with integrity and righteousness. Poems depicting sentiments of water were created in vicinity of Jewoldang on the north, possibly topmost of Soswaewon. They were divided into two categories: One category refers to poems embodying actions of welcoming the first full moon deep in the night after sunset, and the other refers to poems embodying natural scenery of snowscape. All of those poems focused on expressing any atmosphere of turning into yin via convergence. 4. With regard to Ohaeng-ron's interpretation of landscape in the Forty Eight Poems of Soswaewon, it was found that poems depicting sentiments of earth(土), a complex body of convergence and emanation, were created in vicinity of mountain stream around Gwangpunggak which is located in the center of Soswaewon. These poems focused on carrying actions of author Kim by way of natural phenomena and artificial scenery.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.

A Study on the Aviation Safety Policy and Enhancement of Aviation Safety for Low Cost Carriers in Korea (한국의 저비용항공사 안전 향상을 위한 안전정책 연구)

  • Lee, Kang-Seok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.2
    • /
    • pp.69-104
    • /
    • 2009
  • This study is to know the Enhancement of Aviation Safety for Low Cost Carrier in Korea through the long and mid term air safety policy. Especially, the aviation safety authorities of the developed countries in aviation establish action plans under the system plan of central government. Then the countries implement those plans systematically to the related aviation business so that they promote efficient air safety policy implementation. At this time, the Korean government should present the vision about an air safety and systematic strategic plan to cope with the future aviation industry change. Also, it is needed to establish a specific aviation safety action plan. Namely, an air safety master plan and long-term road map must be established. This paper deduces some implications through the abroad cases of aviation safety plan, and then tries to find the applying method of the implications to Korea in the rapidly changing aviation market in the 21st century. It is expected that this paper will help the Korean aviation industry to play a major role in the future. In oder to get suggestions aviation policies of advanced countries with regard to aviation safety, we have looked at the aviation policies of the U.S., the U.K., Australia and Japan, and also LCC's states overseas, LCC's safety policies in Korea, and aviation safety status. Since existing LCCs and new LCCs based in Korea have become the new concept, this new market for LCC has been booming recently. Around Southeast Asia, while there are some LCCs including Air Asia which is supported by the government of Malaysia with emphasis on safety, there are other LCCs, which have failed to achieve confidence in safety and have led to aircraft accidents and financial mismanagement, so we need to verify the safety of overseas LCCs, try to improve domestic LCCs in order to fly international routes and aid international aviation safety. LCCs have been increasing lately thanks to open skies policy and a wide variety of flights.lines. Air Busan, Jin Air, Jeju air, Eastar Air are in service. so the risk of new potential hazards may increase. Therefore it is necessary to take the initiative in aviation markets inside and outside of Korea and the safety management of new LCCs should be taken more seriously than ever before. Among overseas aviation safety policies, we need to implement the FAA's Filght Plan which has a specific Business Plan. I hope this thesis will help improve aviation safety locally and internationally.

  • PDF

Fast Join Mechanism that considers the switching of the tree in Overlay Multicast (오버레이 멀티캐스팅에서 트리의 스위칭을 고려한 빠른 멤버 가입 방안에 관한 연구)

  • Cho, Sung-Yean;Rho, Kyung-Taeg;Park, Myong-Soon
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.625-634
    • /
    • 2003
  • More than a decade after its initial proposal, deployment of IP Multicast has been limited due to the problem of traffic control in multicast routing, multicast address allocation in global internet, reliable multicast transport techniques etc. Lately, according to increase of multicast application service such as internet broadcast, real time security information service etc., overlay multicast is developed as a new internet multicast technology. In this paper, we describe an overlay multicast protocol and propose fast join mechanism that considers switching of the tree. To find a potential parent, an existing search algorithm descends the tree from the root by one level at a time, and it causes long joining latency. Also, it is try to select the nearest node as a potential parent. However, it can't select the nearest node by the degree limit of the node. As a result, the generated tree has low efficiency. To reduce long joining latency and improve the efficiency of the tree, we propose searching two levels of the tree at a time. This method forwards joining request message to own children node. So, at ordinary times, there is no overhead to keep the tree. But the joining request came, the increasing number of searching messages will reduce a long joining latency. Also searching more nodes will be helpful to construct more efficient trees. In order to evaluate the performance of our fast join mechanism, we measure the metrics such as the search latency and the number of searched node and the number of switching by the number of members and degree limit. The simulation results show that the performance of our mechanism is superior to that of the existing mechanism.

Studies on Development Policies for Regional Industry (지역산업 육성정책에 대한 고찰)

  • Kim, Dong-Soo;Lee, Doo-Hee;Kim, Kye-Hwan
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.467-485
    • /
    • 2011
  • After Korean War, Korea focused on catching up with the world economy by concentrating on some target industries around the Capital Region and southern coastal cities. Thus, the regional disparity between Capital Region and non-Capital Regions increased drastically. At last, when Korea acquired full-fledged autonomy in 1994 in the Civilian government (1993-1998) and experienced the Asian financial crisis in 1997-1998, local governments were awakened to the notion of region-oriented development, especially for regional industrial development. The purposes of this paper are to introduce regional industrial development policies since 1998 and to suggest some recommendations in terms of how to adjust regional development for industrial policies in the future. In the introducing phase (Kim administration, 1998-2003), four provincial governments requested national funding to raise regional industries that are of strategic importance. At the same time, the central government recognized the need to nurture regional industries to overcome structural weaknesses. As a result, the Roh administration (2003-2008) gave a birth to a systematizing phase. As the ultimate regional policy objective, the balanced national development has been set and the Special Acts, Special Accounts, Committee, and National Plan have been established. Regional Industrial Promotion Project has been carried out very actively during this period. It had a good start albeit idealistic to a certain extent. Therefore, the current government has changed policy paradigm from balanced growth to regional competitiveness along with global paradigm shifts. In order to enhance regional competitiveness, regional development policies have been pursued in more efficient way. Leading Industry Nurturing Projects (LINPs) on Economic Region level, existed Regional Industrial Promotion Projects (RIPPs) on Province level, and Region Specific Industry Projects (RSIPs) on Local Area level have been implemented. Now, it is appropriate to review regional development policies including industrial policies since 1998 and to adjust them for the future sustainable regional development. Because LINPs and RIPPs will be terminated in next two years, the 2nd stage projects are on planning to reduce the redundancies in two projects. In addition, business support program would be reformed from subsiding technology development to building ecological business system. Finally some policy implications are provided in this paper, which is useful to establish the new regional industrial policies for both central and local government.

  • PDF

Biological Control of Garlic Blue Mold using Pantoea agglomerans S59-4 (Pantoea agglomerans S59-4를 이용한 마늘 푸른곰팡이병의 생물학적 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyung-Jin;Park, Jong-Ho;Han, Eun-Jung;Park, Kyung-Seok;Lee, Sang-Yeob;Lee, Seong-Don
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.148-156
    • /
    • 2010
  • S59-4 isolate was evaluated as a potential biocontrol agent using in vivo wounded garlic bulb assay. When the spore suspension ($10^5$ spores/$m\ell$) of Penicillium hirsutum was co-inoculated with cell suspension of S59-4 isolate on wounded garlics, the isolate showed high suppressive effect to disease development. The isolate was identified as Pantoea agglomerans S59-4(Pa59-4) through Biolog system. Furthermore, soaking garlic bulbs in the suspension of Pa59-4 significantly reduced garlic decay caused by P. hirsutum. The optimal concentration of Pa59-4 for controlling garlic blue mold was $10^7\sim10^8$ cfu/$m\ell$. And suppressive effect of Pa59-4 on garlic storage decay reduced as inoculation concentration of Penicillium hirsutum increased. In addition in order to investigate population dynamics of Pa59-4 on application site of garlic cloves, two antibiotic markers, pimaricin and vancomycin were selected. Bacterial density of Pa59-4 on the wounded garlic cloves increased continuously both under room temperature condition and low temperature condition until 30days after application of Pa59-4, meanwhile that of Pa59-4 on intact garlic cloves increased until 15days after application of Pa59-4 and thereafter decreased continuously. Two culture media for mass-production of Pa59-4, LB medium and TSB medium, were selected. By-product of bio-fungicide formulated by mixing white carbon and bacterial suspension of Pa59-4 suppressed by 40 to 50% garlic blue mold. Above results suggest that Pa59-4 be a promising control agent against garlic blue mold.

The Effect of Marketing Characteristic on Business Performance (창업마케팅특성이 기업성과에 미치는 영향)

  • Jeon, In-oh;An, Un-Seok
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.11 no.3
    • /
    • pp.97-109
    • /
    • 2016
  • In Korea, the survival rate of start-up of 5-year after foundation is as low as 29.6% of the country. This low survival rate is from because of insufficient resources in start-ups compared to those of mid-sized companies. Therefore, the marketing characteristics of entrepreneurship has emerged as a major cause. Therefore, In this study, because learning orientation, marketing experience, competition orientation and etc are differently owned in start-ups, marketing impact to marketing strategy in start-up companies are differently investigated. Therefore, the relationship of learning orientation, marketing experience, competition Orientation with marketing strategies was examined. Based on this, Business performance was examined to suggest contents related to eco-system of start-up companies to representative of start-up companies. For this study, Survey was conducted for 250 start-up entrepreneurs within 3 and half year since foundation from Nov. 20 to Dec. 20, 2015. In result of data-cleaning, 207 meaningful samples were gathered. Based on these, conclusion was obtained. Using SPSS 20.0 statistical program, frequency analysis, reliability analysis, correlation analysis and regression analysis were conducted. the following conclusions were drawn. First, in the impact of marketing environment of Phase 1 start-up companies on marketing strategy, product strategy, distribution strategy and promotion strategy were positively affected by learning orientation, marketing experience and competition orientation. Second, in the effect of 2nd phase marketing strategy to business performance, the financial performance and the non-financial performance. Were positively affected by product strategy, distribution strategy and promotion strategies. Third, The effect of learning orientation, marketing experience and competition orientation to financial performance was positively mediated by product strategy and distribution strategy among 3rd phase meditation strategies. the effect of learning orientation, marketing experience and competition orientation to non-financial performance was positively mediated by products strategy. In comprehensive summary, in order to increase business performance in start-up companies, marketing strategy should be applied in. Especially, the role of learning orientation and marketing experience is vital. In increasement of business performance to characteristics of star up marketing, financial performance can be increased by product strategy and distribution strategy. And, both of financial and non-financial performance can be increased by product strategy. Therefore, in conducting of marketing characteristics of start-up, to increase business performance, the apply of marketing strategy to marketing characteristics of start-up should be required.

  • PDF