• Title/Summary/Keyword: 2 order system

Search Result 14,807, Processing Time 0.072 seconds

Fish Stock Assessment by Hydroacoustic Methods and its Applications - I - Estimation of Fish School Target Strength - (음향에 의한 어족생물의 자원조사 연구 - I - 어군반사강도의 추정 -)

  • Lee, Dae-Jae;Shin, Hyeong-Il;Shin, Hyong-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.142-152
    • /
    • 1995
  • The combined bottom trawl and hydroacoustic survey was conducted by using the training ship Oshoro Maru belong to Hokkaido University in November 1989-1992 and the training ship Nagasaki Maru belong to Nagasaki University in April 1994 in the East China Sea, respectively. The aim of the investigations was to collect the target strength data of fish school in relation to the biomass estimation of fish in the survey area. The hydroacoustic survey was performed by using the scientific echo sounder system operating at three frequencies of 25, 50 and 100kHz with a microcomputer-based echo integrator. Fish samples were collected by bottom trawling and during the trawl surveys, the openings of otter board and net mouth were measured. The target strength of fish school was estimated from the relationship between the volume back scattering strength for the depth strata of bottom trawling and the weight per unit volume of trawl catches. A portion of the trawl catches preserved in frozon condition on board, the target strength measurements for the defrosted samples of ten species were conducted in the laboratory tank, and the relationship between target strength and fish weight was examined. In order to investigate the effect of swimbladder on target strength, the volume of the swimbladder of white croaker, Argyrosomus argentatus, sampled by bottom trawling was measured by directly removing the gas in the swimbladder with a syringe on board. The results obtained can be summarized as follows: 1.The relationship between the mean volume back scattering strength (, dB) for the depth strata of trawl hauls and the weight(C, $kg/\textrm{m}^3$) per unit volume of trawl catches were expressed by the following equations : 25kHz : = - 29.8+10Log(C) 50kHz : = - 32.4+10Log(C) 100kHz : = - 31.7+10Log(C) The mean target strength estimates for three frequencies of 25, 50 and 100 kHz derived from these equations were -29.8dB/kg, -32.4dB/kg and -31.7dB/kg, respectively. 2. The relationship between target strength and body weight for the fish samples of ten species collected by trawl surveys were expressed by the following equations : 25kHz : TS = - 34.0+10Log($W^{\frac{2}{3}}$) 100kHz : TS = - 37.8+10Log($W^{\frac{2}{3}}$) The mean target strength estimates for two frequencies of 25 and 100 kHz derived from these equations were -34.0dB/kg, -37.8dB/kg, respectively. 3. The representative target strength values for demersal fish populations of the East China Sea at two frequencies of 25 and 100 kHz were estimated to be -31.4dB/kg, -33.8dB/kg, respectively. 4. The ratio of the equivalent radius of swimbladder to body length of white croaker was 0.089 and the volume of swimbladder was estimated to be approximately 10% of total body volume.

  • PDF

Lived experience of mothers who have child with cerebral palsy (뇌성마비아 어머니의 경험)

  • Lee Hwa Za;Kim Yee Soon;Lee Gee Won;Gwan Soo Za;Kang In Soon;An Hea Gyung
    • Child Health Nursing Research
    • /
    • v.2 no.1
    • /
    • pp.93-111
    • /
    • 1996
  • The purpose of the study is to identify the lived experience of mothers who have children with cerebral palsy in order to understand their agony. Moreover, the result of study was to find some nursing intervention for disabled children and their mothers. For this purpose, ten mothers who are willing to cooperate with this research were selected at random from those who have children with the cerebral palsy, currently using the municipal facilities for the handicapped with cerebral malfunction. Data collection was done from October 4, 1994 th December 31, 1994. The data were collected by asking the mothers mentioned above with some unstructured open-ended questions, recorded on the tapes with permission by the interviewee in order to prevent missing of the interviewed contents. These collected data have been substantiated and properly analyzed on the basis of phenomenological approach initiated by Colaizzi's method. The results and validity are proved to be credible by means of the individual checking of the interviewed mothers. The results of this study are as follows : 1. When the mother is first informed of the diagnosis of cerebral palsy on her child, she usually misses the crucial timing needed for proper treatment of the child's disorder because she is notified through the doctor's indifference and his apparently inactive, matter-of-fact attitude. At first she suspects the doctor's diagnosis and tries to attribute it to the unknown cause from a certain genetic problem and then she quickly wants to deny the whole situation that her child is really suffering from the cerebral palsy. The reality is too much for her to accept as it is and she would not believe her child is abnormal. Therefore, she even attempts depend on the power of God for its solution. 2. The mother, who goes thorough this kind of uncommon experiences, is totally devoted to the treatment and care of the child and completely ignores her own life and happiness. At the same time, she feels sorry for her other normal children she believes having not enough care and concern. Also, she feels sorry for the sick child when the child's brothers or sisters show special concern for the patient out of sympathy. It is sorry and not satisfied for her that the child is growing with abnormality and neighbor other around have inappropriate attitudes. Likewise, she is discontent with her husband's lack of concern about the child's treatment. She believes that the health care system in this society isn't fulfilling its due purpose. In the state of her utmost distress and anxiety, she always feels the need of competent consultants, and is angry about that her child is treated as an abnormal being, she is trying to hide the child from other people and to make him or her disappear, if possible. Although she doesn't have harmonious relation with her husband, she id happy when he shows his affection for the child and she feels relieved and thankful when the relatives don't mention about the child's condition Since the child's overall status of health is continuously in unstable conditions, requiring her all-time readiness for an emergency, she feels guilty of her child's illness toward the fEmily members as if it was her own fault to have borne such an abnormal child and she feels responsible for the child morally and financially if necessary Because her life is centered on taking care of the child, she cannot afford to enjoy her own life and happiness. She is a lonely mother, fatigued, with no proper relationship with other people around her. With this sense of guilt and responsibility as a mother of an unusual disease, she has no choice but to grieve her destiny from which she is not allowed to escape. 3. Nevertheless, the mother with the child suffering from the cerebral palsy does not easily give up the hope of getting her child cured and she believes that in the long run, though slower than hoped, her abnormal son or daughter will be eventually cured to become a normal sibling someday. This kind of hope is sustained by the mother's strong faith coming from observing the progress of other similar children getting better. Sometimes she is encouraged to have this faith by other mothers who share the same painful experiences, believing that her child will improve even more rapidly than others with the same palsy. Full of hope, she painstakingly waits for the child's healing. Moreover, she plans to have another child. she thinks that the patient child's brothers and sisters only can truly understand and look after the patients. However, when she notices that the progress of other children under the treatment does not look so hopeful, she is distressed by the thoughts that her child may never get well. Too, she is worried that the patient's brother or sister will be born as the same invalid with the cerebral disease. She is discouraged to have another baby as much as she is encouraged to. She is also troubled by the thought that in case she has another baby, she will have to be forced. to neglect the patient child, especially when she does have an extra hand or some reliable person to help her with taking care of the patient.

  • PDF

Depositional Environment and Formation Ages of Eurimji Lake Sediments in Jaechon City, Korea (제천 의림지 호저퇴적물 퇴적환경과 형성시기 고찰)

  • 김주용;양동윤;이진영;김정호;이상헌
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.7-31
    • /
    • 2000
  • Quaternary Geological and geophysical investigation was performed at the Eurimji reservoir of Jaechon City in order to interprete depositional environment and genesis of lake sediments. For this purpose, echo sounding, bottom sampling and columnar sampling by drilling on board and GPR survey were employed for a proper field investigation. Laboratory tests cover grain size population analysis, pollen analysis and $^{14}C$ datings for the lake sediments. The some parts of lake bottom sediments anthropogenically tubated and filled several times to date, indicating several mounds on the bottom surface which is difficult to explain by bottom current. Majority of natural sediments were accumulated both as rolling and suspended loads during seasonal flooding regime, when flash flow and current flow are relatively strong not only at bridge area of the western part of Eurimji, connected to stream valley, but at the several conduit or sewage system surrounding the lake. Most of uniform suspend sediments are accumulated at the lake center and lower bank area. Some parts of bottom sediments indicate the existence of turbid flow and mudflow probably due to piezometric overflowing from the lake bottom, the existence of which are proved by CM patterns of the lake bottom sediments. The columnar samples of the lake sediments in ER-1 and ER-3-1 boreholes indicate good condition without any human tubation. The grain size character of borehole samples shows poorly sorted population, predominantly composed of fine sand and muds, varying skewness and kurtosis, which indicate multi-processed lake deposits, very similar to lake bottom sediments. Borehole columnar section, echo sounding and GPR survey profilings, as well as processed data, indicate that organic mud layers of Eurimji lake deposits are deeper and thicker towards lower bank area, especially west of profile line-9. In addition the columnar sediments indicate plant coverage of the Eurimji area were divided into two pollen zones. Arboreal pollen ( AP) is predominant in the lower pollen zone, whreas non-aboreal pollen(NAP) is rich in the upper pollen zone. Both of the pollen zones are related to the vegetation coverage frequently found in coniferous and deciduous broad-leaved trees(mixed forest) surrounded by mountains and hilly areas and prevailing by aquatic or aquatic margin under the wet temperate climate. The $^{14}C$ age of the dark gray organic muds, ER1-12 sample, is 950$\pm$40 years B.P. As the sediments are anthropogenetically undisturbed, it is assumed that the reliability of age is high. Three $^{14}C$ ages of the dark gray organic muds, including ER3-1-8, ER3-1-10, ER3-1-11 samples, are 600$\pm$30 years B.P., 650$\pm$30 years B.P., 800$\pm$40 years B.P. in the descending order of stratigraphic columnar section. Based on the interpretation of depositional environments and formation ages, it is proved that Eurimji reservoir were constructed at least 950$\pm$40 years B.P., the calibrated ages of which ranges from 827 years, B.P. to 866 years B.P. Ancient people utilize the natural environment of the stream valley to meet the need of water irrigation for agriculture in the local valley center and old alluvium fan area.

  • PDF

Strategy for Store Management Using SOM Based on RFM (RFM 기반 SOM을 이용한 매장관리 전략 도출)

  • Jeong, Yoon Jeong;Choi, Il Young;Kim, Jae Kyeong;Choi, Ju Choel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.93-112
    • /
    • 2015
  • Depending on the change in consumer's consumption pattern, existing retail shop has evolved in hypermarket or convenience store offering grocery and daily products mostly. Therefore, it is important to maintain the inventory levels and proper product configuration for effectively utilize the limited space in the retail store and increasing sales. Accordingly, this study proposed proper product configuration and inventory level strategy based on RFM(Recency, Frequency, Monetary) model and SOM(self-organizing map) for manage the retail shop effectively. RFM model is analytic model to analyze customer behaviors based on the past customer's buying activities. And it can differentiates important customers from large data by three variables. R represents recency, which refers to the last purchase of commodities. The latest consuming customer has bigger R. F represents frequency, which refers to the number of transactions in a particular period and M represents monetary, which refers to consumption money amount in a particular period. Thus, RFM method has been known to be a very effective model for customer segmentation. In this study, using a normalized value of the RFM variables, SOM cluster analysis was performed. SOM is regarded as one of the most distinguished artificial neural network models in the unsupervised learning tool space. It is a popular tool for clustering and visualization of high dimensional data in such a way that similar items are grouped spatially close to one another. In particular, it has been successfully applied in various technical fields for finding patterns. In our research, the procedure tries to find sales patterns by analyzing product sales records with Recency, Frequency and Monetary values. And to suggest a business strategy, we conduct the decision tree based on SOM results. To validate the proposed procedure in this study, we adopted the M-mart data collected between 2014.01.01~2014.12.31. Each product get the value of R, F, M, and they are clustered by 9 using SOM. And we also performed three tests using the weekday data, weekend data, whole data in order to analyze the sales pattern change. In order to propose the strategy of each cluster, we examine the criteria of product clustering. The clusters through the SOM can be explained by the characteristics of these clusters of decision trees. As a result, we can suggest the inventory management strategy of each 9 clusters through the suggested procedures of the study. The highest of all three value(R, F, M) cluster's products need to have high level of the inventory as well as to be disposed in a place where it can be increasing customer's path. In contrast, the lowest of all three value(R, F, M) cluster's products need to have low level of inventory as well as to be disposed in a place where visibility is low. The highest R value cluster's products is usually new releases products, and need to be placed on the front of the store. And, manager should decrease inventory levels gradually in the highest F value cluster's products purchased in the past. Because, we assume that cluster has lower R value and the M value than the average value of good. And it can be deduced that product are sold poorly in recent days and total sales also will be lower than the frequency. The procedure presented in this study is expected to contribute to raising the profitability of the retail store. The paper is organized as follows. The second chapter briefly reviews the literature related to this study. The third chapter suggests procedures for research proposals, and the fourth chapter applied suggested procedure using the actual product sales data. Finally, the fifth chapter described the conclusion of the study and further research.

Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)

  • Choi, Hochang;Kwahk, Kee-Young;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.101-124
    • /
    • 2018
  • Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

The Changing Aspects of North Korea's Terror Crimes and Countermeasures : Focused on Power Conflict of High Ranking Officials after Kim Jong-IL Era (북한 테러범죄의 변화양상에 따른 대응방안 -김정일 정권 이후 고위층 권력 갈등을 중심으로)

  • Byoun, Chan-Ho;Kim, Eun-Jung
    • Korean Security Journal
    • /
    • no.39
    • /
    • pp.185-215
    • /
    • 2014
  • Since North Korea has used terror crime as a means of unification under communism against South Korea, South Korea has been much damaged until now. And the occurrence possibility of terror crime by North Korean authority is now higher than any other time. The North Korean terror crimes of Kim Il Sung era had been committed by the dictator's instruction with the object of securing governing fund. However, looking at the terror crimes committed for decades during Kim Jung Il authority, it is revealed that these terror crimes are expressed as a criminal behavior because of the conflict to accomplish the power and economic advantage non powerful groups target. This study focused on the power conflict in various causes of terror crimes by applying George B. Vold(1958)'s theory which explained power conflict between groups became a factor of crime, and found the aspect by ages of terror crime behavior by North Korean authority and responding plan to future North Korean terror crime. North Korean authority high-ranking officials were the Labor Party focusing on Juche Idea for decades in Kim Il Sung time. Afterwards, high-ranking officials were formed focusing on military authorities following Military First Policy at the beginning of Kim Jung Il authority, rapid power change has been done for recent 10 years. To arrange the aspect by times of terror crime following this power change, alienated party executives following the support of positive military first authority by Kim Jung Il after 1995 could not object to forcible terror crime behavior of military authority, and 1st, 2nd Yeongpyeong maritime war which happened this time was propelled by military first authority to show the power of military authority. After 2006, conservative party union enforced censorship and inspection on the trade business and foreign currency-earning of military authority while executing drastic purge. The shooting on Keumkangsan tourists that happened this time was a forcible terror crime by military authority following the pressure of conservative party. After October, 2008, first military reign union executed the launch of Gwanmyungsung No.2 long-range missile, second nuclear test, Daechung marine war, and Cheonanham attacking terror in order to highlight the importance and role of military authority. After September 2010, new reign union went through severe competition between new military authority and new mainstream and new military authority at this time executed highly professionalized terror crime such as cyber/electronic terror unlike past military authority. After July 2012, ICBM test launch, third nuclear test, cyber terror on Cheongwadae homepage of new mainstream association was the intention of Km Jung Eun to display his ability and check and adjust the power of party/military/cabinet/ public security organ, and he can attempt the unexpected terror crime in the future. North Korean terror crime has continued since 1980s when Kim Jung Il's power succession was carried out, and the power aspect by times has rapidly changed since 1994 when Kim Il Sung died and the terror crime became intense following the power combat between high-ranking officials and power conflict for right robbery. Now South Korea should install the specialized department which synthesizes and analyzes the information on North Korean high-ranking officials and reinforce the comprehensive information-collecting system through the protection and management of North Korean defectors and secret agents in order to determine the cause of North Korean terror crime and respond to it. And South Korea should participate positively in the international collaboration related to North Korean terror and make direct efforts to attract the international agreement to build the international cooperation for the response to North Korean terror crime. Also, we should try more to arrange the realistic countermeasure against North Korean cyber/electronic terror which was more diversified with the expertise terror escaping from existing forcible terror through enactment/revision of law related to cyber terror crime, organizing relevant institute and budget, training professional manpower, and technical development.

  • PDF

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

An Exploratory study on the demand for training programs to improve Real Estate Agents job performance -Focused on Cheonan, Chungnam- (부동산중개인의 직무능력 향상을 위한 교육프로그램 욕구에 관한 탐색적 연구 -충청남도 천안지역을 중심으로-)

  • Lee, Jae-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3856-3868
    • /
    • 2011
  • Until recently, research trend in real estate has been focused on real estate market and the market analysis. But the studies on real estate training program development for real estate agents to improve their job performance are relatively short in numbers. Thus, this study shows empirical analysis of the needs for the training programs for real estate agents in Cheonan to improve their job performance. The results are as follows. First, in the survey of asking what educational contents they need in order to improve real estate agents' job performance, most of the respondents show their needs for the analysis of house's value, legal knowledge, real estate management, accounting, real estate marketing, and understanding of the real estate policy. This is because they are well aware that the best way of responding to the changing clients' needs comes from training programs. Secondly, asked about real estate marketing strategies, most of respondents showed their awareness of new strategies to meet the needs of clients. This is because new forms of marketing strategies including internet ads are needed in the field as the paradigm including Information Technology changes. Thirdly, asked about the need for real estate-related training programs, 92% of the respondents answered they need real estate education programs run by the continuing education centers of the universities. In addition, the survey showed their needs for retraining programs that utilize the resources in the local universities. Other than this, to have effective and efficient training programs, they demanded running a training system by utilizing the human resources of the universities under the name of the department of 'Real Estate Contract' for real estate agents' job performance. Fourthly, the survey revealed real estate management(44.2%) and real estate marketing(42.3%) is the most chosen contents they want to take in the regular course for improving real estate agents' job performance. This shows their will to understand clients' needs through the mind of real estate management and real estate marketing. The survey showed they prefer the training programs as an irregular course to those in the regular one. Despite the above results, this study chose subjects only in Cheanan and thus it needs to research more diverse areas. The needs of programs to improve real estate agents job performance should be analyzed empirically targeting the real estate agents not just in Cheonan but also cities like Pyeongchon, Ilsan and Bundang in which real estate business is booming, as well as undergraduate and graduate students whose major is real estate studies. These studies will be able to provide information to help develop the customized training programs by evaluating elements that real estate agents need in order to meet clients satisfaction and improve their job performance. Many variables of the program development learned through these studies can be incorporated in the curriculum of the real estate studies and used very practically as information for the development of the real estate studies in this fast changing era.

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.