• Title/Summary/Keyword: 2 inch crystal

Search Result 68, Processing Time 0.028 seconds

Status of Quartz Glass Crucible (석영유리 도가니 국내외 현황)

  • Noh, Sunghun;Kang, NamHun;Yun, Heuikeun;Kim, Hyeong-Jun
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.452-463
    • /
    • 2019
  • A quartz glass crucible is the essential material for manufacturing silicon ingots such as semiconductors and solar cells. Quartz glass crucibles for semiconductors and solar cells are made similar, but differ in surface purity, structure and durability. Recently, ultra high purity synthetic glass crucibles for semiconductors have become more important due to foreign problems. In Korea, it has succeeded in producing 28-inch quartz glass crucibles through the past 10 years. However, 32-inch synthetic quartz glass for the production of silicon ingots for semiconductors is not up to the level of advanced technology, and the technology gap is expected to be 2 to 3 years. In order to overcome these technological gaps and localize synthetic quartz glass ware, close cooperation between production companies and demand companies and localization of synthetic quartz glass powder must also be made. In addition, if government support can be added, faster results can be expected.

Growth and characterization of semi-insulating GaAs co-doped with Cr and In by vertical gradient freeze technique (수직온도구배냉각법으로 크롬과 인듐이 함께 도핑된 반절연 갈륨비소 단결정의 성장 및 특성평가)

  • Young Ju Park;Suk-Ki Min;Kee Dae Shim;Mann J. Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.83-91
    • /
    • 1994
  • We have constructed a vertical gradient freeze (VGF) grower for GaAs single crystals 2 inch in diameter and have grown semi-insulating GaAs co-doped with Cr and In. For the co-doped crystal, the segregation coefficients of the dopants remain unchanged when compared to those doped with only Cr or In. The concentration of Cr and in atoms range from about $2{\Times}10_{16} to 3{imes}10^{17} cm^{-3}$ and $2{\Times}10^{19} to 3{\Times}10^{20} cm^{-3}$ at the seed to the tail part of the grown crystal, respectively. The averaged dislocation etch pit density is found to be less than $8000 cm^{-2}$ throughout the ingot. It is also found that there is some evidence of lattice hardening for the crystal in which the dislocation density is decreased to less than $1000 cm^{-2}$ as In concentration increases. The resistivity increases abruptly from $10^{-2}$ up to $10^8$ Ohm-cm, while the carrier concentration decreases from $10^{16}$ to $10^8 cm^{-3}$ along the growth direction of the GaAs crystal. Semi-insulating properties can be obtained above a critical concentration of Cr of about $6{\Times}10{^16} cm^{-3}$ in the crystal. The main deep levels existing in the GaAs: Cr,In sample are two electron traps at $E_C-0.81eV, E_C-0.35eV$, and two hole traps at $E_V+0.89eV, E_V+0.65eV$.

  • PDF

Micro Structure and Surface Characteristics of NiCr Thin films Prepared by DC Magnetron Sputter according to Annealing Conditions (DC 마그네트론 스퍼터링 NiCr 박막의 열처리 조건에 따른 미세구조 및 표면특성)

  • Kwon, Yong;Kim, Nam-Hoon;Choi, Dong-You;Lee, Woo-Sun;Seo, Yong-Jin;Park, Jin-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.554-559
    • /
    • 2005
  • Ni/Cr thin film is very interesting material as thin film resistors, filaments, and humidity sensors because their relatively large resistivity, more resistant to oxidation and a low temperature coefficient of resistance (TCR). These interesting properties of Ni/Cr thin films are dependent upon the preparation conditions including the deposition environment and subsequent annealing treatments. Ni/Cr thin films of 250 nm were deposited by DC magnetron sputtering on $Al_2O_3/Si$ substrate with 2-inch Ni/Cr (80/20) alloy target at room temperature for 45 minutes. Annealing treatments were performed at $400^{\circ}C,\;500^{\circ}C,\;and\;600^{\circ}C$ for 6 hours in air or $H_2$ ambient, respectively. The clear crystal boundaries without crystal growth and the densification were accomplished when the pores were disappeared in air ambient. Most of surface was oxidic including NiO, $Ni_2O_3$ and $Cr_xO_y$(x=1,2, y=2,3) after annealing in air ambient. The crystal growth in $H_2$ ambient was formed and stabilized by combination with each other due to the suppression of oxidized substance on film surface. Most oxidic Ni was restored when the oxidic Cr was present due to its stability in high-temperature $H_2$ ambient.

Design and Performance Evaluation of Small Size Counting and Imaging Gamma Probe System (소형 계수용 및 영상용 감마프로브 시스템의 설계와 성능평가)

  • Yang, Myo-Geun;Kwark, Cheol-Eun;Sim, yong-Geol;Kim, Hee-Joung;Choi, Yong;Chung, Jung-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.291-299
    • /
    • 1997
  • As a microimaging device detecting gamma rays emitted from small lesions or tumors during operation, the intraoperative surgical probe has been proposed and is now under development. We have designed a multipurpose portable gamma prove system and evaluated the performance both for the absolute counting purpose of residual radioactivities and for the localizing capability of gamma events using the NaI(Tl) crystal and two types of photomultiplier tubes(PMTs). Counting efficiencies in the range of routine clinical use of radiation dose were measured using the assembly of single channel PMTs and 0.5 inch thick NaI(Tl) crystal of 1 inch diameter. The positioning of gamma events for imaging purpose requires the multiple channel PMTs with appropriate positioning electronics. We have designed a simple and reliable positioning circuit based on the concept of modified Anger. In preliminary experiments using the multiple channel PMT of 3 inch diameter and the dim lighth source, we were able to trace and localize the correct position with reduced positioning error by the use of two multiplier/divider chipset and simplified peripherals. The energy resolutions for the counting gamma probe measured as full width at half maximum(FWHM) for Cs-137, F-18, Tc-99m were 12%, 13%, and 36%, respectively. The spatial resolution for the imaging gamma probe measured as FWHM for green LED was 2.9 mm. The results indicate that the currently developing probe is very promising and could be very useful for many applications in nuclear medicine. Future studies will include developing collimators, improving interface hardwares, and evaluating the system with clinical data.

  • PDF

Colorimetric Characteristics Evaluation of OLED and LCD

  • Baek, Ye-Seul;Kim, Hong-Suk;Park, Seung-Ok;Kim, Youn-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.509-512
    • /
    • 2008
  • In this study, colorimetric characteristics of a 2.2-inch iriver MP4 based upon OLED was evaluated and compared with another MP4 based upon Liquid Crystal Display (LCD). According to IEC61966-4, the two displays were tested in terms of spectral power distribution, tone reproduction curve (TRC), luminance, contrast, correlated color temperature, 2D color gamut and spatial uniformity. Consequently, the OLED showed better performance for the first four aspects but a similar quality was observed for the rest.

  • PDF

Thickness optimization of the bulk GaN single crystal grown by HVPE processing variable control (HVPE 법에서의 공정변수 조절에 의한 bulk GaN 단결정의 두께 최적화)

  • Park, Jae Hwa;Lee, Hee Ae;Lee, Joo Hyung;Park, Cheol Woo;Lee, Jung Hun;Kang, Hyo Sang;Kang, Suk Hyun;Bang, Sin Young;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.89-93
    • /
    • 2017
  • GaN single crystals were grown by controlling of various processing parameters such as growing temperature, V/III ratio and growing rate. We optimized thickness of bulk GaN single crystal by analyzing defect of surface and inside of the GaN single crystal for application to high brightness and power device. 2-inch bulk GaN single crystals were grown by HVPE (hydride vapor phase epitaxy) on sapphire and their thickness was 0.3~7.0 mm. Crystal structure of the grown bulk GaN was analyzed by XRD (X-ray diffraction). The surface characteristics of the grown bulk GaN were observed by OM (optical microscope) and SEM (scanning electron microscopy) with measuring EPD (etch pits density) of the GaN crystals.

Process design for solution growth of SiC single crystal based on multiphysics modeling (다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계)

  • Yoon, Ji-Young;Lee, Myung-Hyun;Seo, Won-Seon;Shul, Yong-Gun;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • A top-seeded solution growth (TSSG) is a method of growing SiC single crystal from the Si melt dissolved the carbon. In this study, multiphysics modeling was conducted using COMSOL Multiphysics, a commercialized finite element analysis package, to get analytic results about electromagnetic analysis, heat transfer and fluid flow in the Si melt. Experimental results showed good agreements with simulation data, which supports the validity of the simulation model. Based on the understanding about solution growth of SiC and our set-up, crystal growth was conducted on off-axis 4H-SiC seed crystal in the temperature range of $1600{\sim}1800^{\circ}C$. The grown layer showed good crystal quality confirmed with optical microscopy and high resolution X-ray diffraction, which also demonstrates the effectiveness of the multiphysics model to find a process condition of solution growth of SiC single crystal.

A Study on the Fabrication Method of Micro-Mold using 2.2inch LGP by the SCS Micro-Lens Pattern (SCS Micro-lens 패턴 적용 휴대폰 도광판 제작용 미세금형 제작에 대한 연구)

  • Oh, J.G.;Kim, J.S.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.60-63
    • /
    • 2011
  • BLU(back light unit) is one of kernel parts of LCD(liquid crystal display) unit. New 3-D micro-lens pattern for LGP(light guide plate), one of the most important parts of LCD-BLU, had been researched. Instead of dot pattern made by chemical etching or laser ablation, SCS(slanted curved surface) micro-lens pattern was designed with optical CAE simulation. This study introduce the method of design using optical CAE simulation for SCS micro-lens, the new fabrication method of micro-mold with SCS micro-lens pattern.

Optimization of optical design for Eye Glass Display

  • Moon, H.C.;Kim, T.H.;Park, K.B.;Park, Y.S.;Seok, J.M.;Kim, H.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1603-1606
    • /
    • 2005
  • Eye Glass Display (EGD) with microdisplay to realize the virtual display can make the large screen, so virtual image has been developed by using microdisplay panel. This paper shows study of low cost lens design and simulation for microdisplay system with 0.6" Liquid Crystal on Silicon (LCoS) panel. Lens design optimized consider to spherical aberration, astigmatism, distortion, and chromatic aberration. Code V is used and it designed an aspheric lens about exit pupil 6mm, eye relief 20mm and 35 degree of field of view (FOV). With the application this aspheric lens to LCOS type's microdisplay, virtual image showed 50 inch at 2m. One side of the aspheric lens was constituted from diffractive optical element (DOE) for the improvement in a performance. It had less than ${\pm}2%$ of distortion value and modulation transfer function in axial had 20% of resolution with 30 lp/mm spatial frequency. The optical system is suitable for display of 0.6"-diagonal with SVGA.

  • PDF

Design of Diffraction Limited Head Mounted Display Optical System Based on High Efficiency Diffractive Elements

  • Tehrani, Masoud Kavosh;Fard, Sayed Sajjad Mousavi
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.150-156
    • /
    • 2017
  • A diffraction limited optical system for head mounted displays (HMDs) was designed. This optical system consists of four modules, including 1:5 mm and 5:30 mm beam expanders, polarization grating-polarization conversion system (PG-PCS) and refractive/diffractive projection optical module. The PG-PCS module transforms the unpolarized Gaussian beam to a linearly polarized beam and it simultaneously homogenizes the spatial intensity profile. The optical projector module has a $30^{\circ}$ field of view, a 22 mm eye relief, and a 10 mm exit pupil diameter with a compact structure. Common acrylic materials were utilized in the optical design process; therefore, the final optical system was lightweight. The whole optical system is suitable for a 0.7 inch liquid crystal on silicon microdisplay (LCOS) with HDTV resolution ($1920{\times}1080$) and $8.0{\mu}m$ pixel pitch.