• Title/Summary/Keyword: 2 Stroke engine

Search Result 205, Processing Time 0.024 seconds

Comparison of performance characteristics of 2-stroke small engine with oil supply methods (오일공급 방식에 따른 2행정 소형원동기의 성능특성 비교)

  • Kim, Byeong-Guk;Choi, Young-Ha;Oh, Jin-Woo;Lee, Dong-Geun;Yoon, Suck-Ju;Kim, Dong-Sun;Han, Jong-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2916-2921
    • /
    • 2008
  • This paper presents the performance and characteristics of small spark-ignited small 2-stroke engine. A single cylinder, two-stroke, air cooled 23cc SI engine for brush-cutter was used in this study. For the performance of the engine, rpm, torque, fuel consumption and lubricate oil consumption were measured, and also HC, CO, NOx emissions and excess air ratio according to throat open ratio under two lubrication method were measured and analyzed. The results showed that maximum of engine rpm is nearly same in both methods and also, torque, power is similar. exhaust emissions tend to decrease with throat open ratio.

  • PDF

The prediction of Performance in Two-Stroke Large Marine Diesel Engine Using Double-Wiebc Combustion Model (2중 Wiebe 연소모델을 이용한 2행정 대형 선박용 디젤엔진의 성능예측)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.637-653
    • /
    • 1999
  • In this study well-known burned rate expressions of Weibe function and double Wiebe function have been adopted for the combustion analysis of large two stroke marine diesel engine. A cycle simulation program was also developed to predict the performance and pressure waves in pipes using validated burned rate function,. Levenberg-Marquardt iteration method was applied to cali-brate the shape coefficients included in double Wiebe function for the performance prediction of two-stroke marine diesel engine. As a result the performance prediction using double Wiebe func-tion is well correlated withexperimental dta with the accuracy of 5% and pressure waves in intake and transport pipe are well predicted. From the results of this study it can be confirmed that the shape coefficients of burned rate function should be modified using the numerical method suggested for the accurated prediction and double Wiebe function is more suitable than Wiebe func-tion for combustion analysis of large two stroke marine engine.

  • PDF

The Characteristics of Backfire for 2 stroke Free-Piston Hydrogen Fueled Engine with Uni-flow Scavenging (Uni-flow 소기방식 2행정 프리피스톤 수소기관의 스트로크변화에 따른 역화 특성)

  • Cho, Kwan-Yeon;Cho, Hyung-Wook;Lee, Jong-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.5
    • /
    • pp.371-377
    • /
    • 2009
  • Backfire characteristics for hydrogen fueled free piston engine with uni-flow scavenging is investigated with different stroke, exhaust vlave openning timing and fuel-air equivalence ratio by using RICEM (Rapid Intake Compression Expansion Machine) for combustion research of free piston engine. As results, it is found that backfire can be occurred due to slow combustion of unhomogeneous mixture in the piston crevice volume or/and in the cylinder near piston head. And the more stroke of free piston H2 engine with uni-flow scavenging is short the more opening timing of exhaust valve have to be advanced to control backfire.

Comparison of Performance and Emissions Characteristics on 23cc Gasoline engine and LPG engine at WOT Condition (WOT조건에서 23cc 가솔린 엔진과 LPG 엔진의 성능 및 배기특성 비교)

  • Kim, B.G.;Choi, Y.H.;Oh, J.W.;Lee, D.G.;Kim, D.S.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • This paper presents the performance and emissions characteristics of a small spark-ignited 2-stroke gasoline and LPG engine. The engine used in this paper is a single cylinder, two-stroke, air-cooled SI engine for brush cutter. We measured the rpm, torque, fuel consumption and HC, CO, NOx emissions in associated with the dynamometer load at WOT. The results showed that as engine revolution speed decreased, the excess air ratio of gasoline engine kept going about 0.9 and that of LPG engine increased 0.83 to 1.05. Torque and power of gasoline engine was higher than LPG engine. In exhaust emissions, HC emissions of gasoline engine was lower than LPG engine. In low speed area, CO emissions of LPG engine was lower than gasoline engine. Both gasoline engine and LPG engine emitted little NOx emissions.

  • PDF

Effect of Carburetor throttle angle on the characteristics of 2-stroke 26cc small engine (카뷰레터 스로틀 변화가 26cc 급 2 행정 엔진 특성에 미치는 영향)

  • Choy, Y.H.;Cho, H.M.;Cho, S.N.;Kim, B.G.;Yoon, S.J.;Han, J.G.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3341-3346
    • /
    • 2007
  • This paper presents effects of carburetor throttle angle on the performance characteristics of a small sparkignited, gasoline engine. The engine used in the test is a single cylinder, two-stroke, air-cooled 26cc SI engine for brush-cutter. We measured the rpm, torque, power, and fuel consumption according to the six different throttle angle conditions of the rotary-type carburetor and to the engine dynamometer loads. We had concluded that maximum power happened at 5000${\sim}$6000rpm and at the same condition was the minimum specific fuel consumption.

  • PDF

A Study on the Transient Torsional Vibration of 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 과도비틀림진동에 관한 연구)

  • Lee, D. C.;J. D. Yu;H. J. Jeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.312.2-312
    • /
    • 2002
  • Theoretical analysis of transient torsional vibration was started from early 1960's for high power synchronous motor application. Especially, its simulation and measuring techniques in marine engineering field have been steadily studied by manufacturers of flexible coupling and designers of four stroke marine diesel engine. In this paper, the simulation method of transient torsional vibration of four stroke marine diesel engine using the Newmark method are introduced. (omitted)

  • PDF

Introduction For Dual Fuel Electric Propulsion LNGC (DUAL-FUEL ELECTRIC PROPULSION LNG 선 소개)

  • Kim, Jin-Mo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.99-100
    • /
    • 2006
  • 최근 LNG 연료 시장의 호황에 힘입어 LNG선들이 점차 대형화 추세에 있고, LNG선의 추진 기판 또한 경제성, 환경 영향 등의 주어진 요구 환경에 따라 다양화 되고 있다. 기존의 Steam Turbine Propulsion 외에 Conventional 2-stroke Diesel Engine 및 Dual-fuel 4-stroke Diesel Engine 이 LNG선의 주 기관으로 각광받고 있다. 이에 따라 Dual fuel electric propulsion LNGC의 기본 개념, 작동 원리 주요 보조 기기, 타 추진 시스템과의 비교 능에 대해 고찰하였다.

  • PDF

Simulation of the Gas Exchange Process in a Two - Stroke Cycle Diesel Engine (2행정 사이클 디젤기관의 가스교환과정 시뮬레이션)

  • 고대권;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.104-112
    • /
    • 1994
  • The scavenging efficiency has a great influence on the performance of a diesel engine, especially slow two-stroke diesel engines which are usually used as a marine propulsion power plant. And this is greatly affected by the conditions in the cylinder, scavenging manifold and exhaust manifold during the gas exchange process. There are many factors to affect on the scavenging efficiency and these factors interact each other very complicatedly. Therefore the simulation program of the gas exchange process is very useful to improve and predict the scavenging efficiency, due to the high costs associated with redesign and testing. In this paper, a three-zone scavenging model for two-stroke uniflow engines was developed to link a control-volume-type engine simulation program for performance prediction of long-stroke marine engines. In this model it was attempted to simulate the three different regions perceived to exist inside the cylinder during scavenging, namely the air, mixing and combystion products regions, by modeling each region as a seperate control volume. Finally the scavenging efficiency was compared with three type of scavenging modes, that is, pure displacement, partial mixing and prefect mixing.

  • PDF

Numerical Study of the Effect of Head Shapes on the Flow Field in a Cylinder of Two-Stroke Engine (헤드 형상에 따른 2행정기관 실린더내의 유동장에 대한 수치해석적 연구)

  • Kang, D.W.;Yang, H.C.;Chae, S.;Ryou, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.48-57
    • /
    • 1994
  • The specific power output and thermal effeciency of any two-stroke engine are dependent on its scavenging behavior. Among the many factors which influence on the scavenging process, the cylinder head shape is one of the important factor. Hence in this study three different type models of cylinder head shape which are the cylindrical, the spherical and the arbitrary shape are studied to show the effects of the turbulent scavenging process in the cylinder with one inlet port, two side ports and one exhaust port. A modified version of KIVA-II which strip out of or add planes of cells across the mesh above the piston for flow simulation of two-stroke engine is used. The $k-{\varepsilon}$ turbulent model is used. The results show that the flow in a two-stroke engine cylinder of the spherical head shape among the three different type model is a desirable for efficient scavenging.

  • PDF

A prediction of the scavenging efficiency and the performance of a two-stoke SI engine with the different exhaust systems (배기관 형상에 따른 2행정기관의 소기효율 및 성능 예측)

  • Chung, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.130-135
    • /
    • 1995
  • In this paper, the numerical simulation of the method of characteristics for a two-stroke SI engine was carried out, and the scavenging efficiency and the performance of single engine with two types of exhaust system, that is, a pipe exhaust system and a tuned exhaust system, were predicted and compared. The conculusions are obtained as follows. (1) The method of characteristics of hometropic flow considering the friction and the variation of area is useful to predict the scavenging efficiency and the performance of the two-stroke engine. (2) The shape of exhaust system effects directly on the scavenging and the trapping efficiency. (3) A tuned exhaust system consisted of the diffuser and the convergent nozzle makes the plugging pulse and therefore enhances the scavenging and the trapping efficiency. (4) It may be possible to design the optimum exhaust system by using the plugging pulse.

  • PDF