• Title/Summary/Keyword: 2차원 직접인체측정

Search Result 11, Processing Time 0.027 seconds

A Comprehensive Analysis of 3D Body Scanning vs. Manual Measurements in a Large-Scale Anthropometric Survey -Insights from the 8th Size Korea Project- (대규모 인체치수조사 사업에서 3차원 측정치와 직접측정치의 차이 분석 -제8차 사이즈코리아 사업을 중심으로-)

  • Sunmi Park
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.2
    • /
    • pp.233-253
    • /
    • 2024
  • This study analyzed differences between three-dimensional (3D) body scanning and manual measurements, aiming to assess whether 3D scanning can replace traditional anthropometric tools, such as tape measures and calipers. Data from 4,478 participants in the 8th Size Korea Project were analyzed, covering 43 measurement items. Since Given that the 3D and manual measurements were performed on the same subjects in the 8th Size Korea Project, it was possible to determine the correlation more accurately between the two measurement methods more accurately. Using Applying ISO 20685-1(2018) standards, 15 out of the 43 items fell within allowable error limits. When classified into six types, "small circumferences" and "segment lengths" showed averages of 3.35 mm and 3.10 mm, respectively, within acceptable range. "Body heights" and "body depths" slightly exceeded the limit, with averages of 5.28 mm and 6.58 mm. "Body widths" and "large circumferences" surpassed the limit, with means of 16.77 mm and 16.18 mm. The study offers an objective basis to for validate validating 3D measurements' measurements' reliability and accuracy, addressing various industries' needs for information on the human body's dimensions information.

Comparative Analysis of Body Measurement and Fit Evaluation between 2D Direct Body Measuring and 3D Body Scan Measuring (직접측정과 3차원 측정에 따른 인체치수 및 의복 착장 비교분석)

  • Istook, Cynthia L.;Lim, Ho-Sun;Chun, Jong-Suk
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.6
    • /
    • pp.1347-1358
    • /
    • 2011
  • This study purposed to analyze differences in body measurement between the 2D direct body measuring method and the 3D body scan measuring method and to perform the appearance evaluation and cross-sectional evaluation of the fit of pants to which body measurements obtained by each measuring method were applied. Body measuring was conducted in 10 women in their 20s-30s using 2D direct body measuring and 3D automatic measuring with Hamamatsu body scanner. Among the 10 women, 3 participated in experimental garment wearing. Experimental pants were made using their 2D direct body measurements and 3D automatic measurements, and wearing tests were performed through expert evaluation and cross-sectional evaluation. The results of the experiment were as follows. According to the results of comparative analysis on differences between 2D direct body measurements and 3D scan measurements, 3D automatic measurements were significantly larger in bust circumference, ankle circumference, armscye circumference, shoulder length, scye depth, and arm length. As circumferences measured with the 3D body scanner were somewhat larger than directly measured ones, it is suggested to adjust ease when using existing pattern making methods. We prepared experimental garments by the same pattern making method through applying body measurements obtained with the two measuring methods, and assessed the fit of the garment comparatively through expert evaluation and 3D scan cross-sectional evaluation. According to the results, 2D-pants using 2D direct body measurements was slightly tighter than 3D-pants using 3D measurements in waist circumference, hip circumference, and abdominal circumference. In the results of comparing appearance in terms of the fit of the experimental garment in each subject, significant difference was observed in most of the compared items. This result suggests that 3D automatic body measuring data may show different accuracy according to body shape and therefore it is necessary to examine difference between 2D direct body measurements and 3D automatic measurements according to body shape.

Upper Body Surface Change Analysis using 3-D Body Scanner (3차원 인체 측정기를 이용한 체표변화 분석)

  • Lee Jeongran;Ashdoon Susan P.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1595-1607
    • /
    • 2005
  • Three-dimensional(3-D) body scanners used to capture anthropometric measurements are now becoming a common research tool far apparel. This study had two goals, to test the accuracy and reliability of 3-D measurements of dynamic postures, and !o analyze the change in upper body surface measurements between the standard anthropometric position and various dynamic positions. A comparison of body surface measurements using two different measuring methods, 3-D scan measurements using virtual tools on the computer screen and traditional manual measurements for a standard anthropometric posture and for a posture with shoulder flexion were $-2\~20mm$. Girth items showed some disagreement of values between the two methods. None of the measurements were significantly different except f3r the neckbase girth for any of the measuring methods or postures. Scan measurements of the upper body items showed significant linear surface change in the dynamic postures. Shoulder length, interscye front and back, and biacromion length were the items most affected in the dynamic postures. Changes of linear body surface were very similar for the two measuring methods within the same posture. The repeatability of data taken from the 3-D scans using virtual tools showed satisfactory results. Three times repeated scan measurements f3r the scapula protraction and scapula elevation posture were proven to be statistically the same for all measurement items. Measurements from automatic measuring software that measured the 3-D scan with no manual intervention were compared with the measurements using virtual tools. Many measurements from the automatic program were larger and showed quite different values.

3D dress modeling and Its 2D pattern development to activate the use of 3D virtual design process (가상 의복 제작 프로세스 활성화를 위한 드레스의 모델링과 정밀 패턴의 설계 및 검증)

  • Lee, Ji-Young;Hong, Kyung-Hi
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • There still is a limitation in the usage of 3D clothes model in the production line due to the lack of compatibility between 3D modeling software, and its accurate 2D pattern making software, especially for free formed dress with tight fitted zone and draped part. In this study, obstacles in the 3D direct dress design process was overcome by solving the compatibility among each step of 3D virtual design process as well as adopting 3D-2D direct pattern development program called 2C-AN. Efficacy of making 2D pattern from 3D dress design using 2C-AN program developed by the authors was examined during the course of actual dress making process. Accurate ease over the fitted dress part was examined by 3D scanning technology, and the actual appearance of the draped part was compared with the simulation image of dress model. It was confirmed that the entire 3D design process and direct 2D pattern development proposed in this study was accurate enough to use in the 3D design process.

  • PDF

A Study of the Characteristics of the Human External Auditory Canal Using 3-Dimensional Medical Imaging (3차원 의료영상을 이용한 인체 외이도 특징에 관한 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.467-473
    • /
    • 2017
  • Using Digital Imaging and Communications in Medicine(DICOM) and a 3D medical imaging program, the characteristics of the external auditory canal(EAC) were compared. Using images of the ears of 63 different male and female subjects of varying age, this study measured and compared EAC transverse axis lengths, internal diameter circumferences, and upper and lower curvature angles. The findings of the study indicated differences in EAC shapes according not only to age and sex but also to the left and right of the same subject. A comparison between the sexes of the subjects (35 males and 28 females) indicated that, on average, the length of the EAC was 4.75mm longer in males. Based on the lower curvature angle, the interior side of the diameter circumference of the EAC was found to be reduced on average by 37.2% compared to the exterior side. Although the upper curvature angle was on average $25.7^{\circ}$ larger than the lower curvature angle, 4 subjects showed a larger lower curvature angle and large differences between the upper and lower curvature angles were observed in 8 subjects of the younger age group (4~14 years old). This indicated changes in EAC curvature shapes during growth. This study presents a method to raise safety and precision by comparing direct measurements taken through physical means and indirect measurements acquired from existing ear samples. This was possible due to technological developments in which 3D medical image representation technology creates images close to reality, and, through further development, this method is expected to be used for standardization research of EAC shapes.

A Study on the Body Characteristics of High School Boys According to Their Drop Types (남자 고등학생의 드롭별 인체 특성에 관한 연구)

  • Hyun, Eun-Kyong;Nam, Yun-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.8
    • /
    • pp.1233-1241
    • /
    • 2010
  • This study analyzes the body characteristics of high school boys according to 3 different body types in order to improve the fit of upper garments. First, among the lateral body types, the straight body type was selected from the SizeKorea 3D scanned data and 2D measurement data. Second, high school boys (classified as straight lateral body type) were grouped into type B, A, and Y drop groups. The percentages of type B, type A, type Y are 17.8%, 48.1%, 32.1% respectively. The characteristics of the body types were analyzed. While the bust circumference were the same among the three body types (chest width, back width, back across shoulder, and bust width did not show a significant difference); however, waist and hip measurements showed a significant difference among the three body types. Third, the height of the high school boys ranged between 165cm and 180cm and the bust circumference between 85cm and 97cm. For the bust size categories, type B and type Y are distributed similarly; however, type A is distributed in the smaller bust size categories.

Analysis of Lower Somatotype on Adult Women and Appearance Analysis of Flare Skirts by using the Image Processing (성인 여성의 하반신 체형분석과 염상처리를 이용한 플레어 스커트의 외관분석)

  • Lee, Soo-Jung;Hong, Jeong-Min
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.252-258
    • /
    • 1999
  • The aims of this study is to classify the lower somatotype of adult women and appearance analysis on the shape of flare skirts by using the image processing. Also We have made skirts in order to analyze the various types of appearance of flare skirts by using the image processing. The subjects for our wear test lower somatotype, who were controlled in their waist, abdomen and hip shapes. The flare skirts used for wear test were 112 types(combinated 14 fabric type and 8 lower somatotype). The effect of lower somatotype on the shape of flare skirts was determined by the horizontally hem line section shape and the silhouette of flare skirts with image processing. The data were analyzed by using analysis of variance and Turkey, Duncan multiple range test. The results obtained are summarized as follows: It is shown that the fabric weight elongation differs in fabrics properties, in direction of textures. The shape horizontal section of flare skirt hem line has differed with the number of nodes, wave-height of nodes and breadth of silhouette by fabrics properties and lower somatotype. It is noticed that the breadth of flare skirts by the silhouette has high correlation with the drape ability of fabrics and lower somatotype. Results for our flare skirts show changes in amplitude and mean with fabrics, somatotype. Therefore we can say that gray-level histograms are correlated with changes in appearance, differences in drape spacing and related fabric properties and their somatotype.

  • PDF

Proteome in Toxicological Assessment of Endocrine Disrupting Chemicals (프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구)

  • 김호승;계명찬
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.87-100
    • /
    • 2003
  • It is important to understand the potential human health implications of exposure to environmental chemicals that may act as hormonally active agents. It is necessary to have an understanding of how pharmaceutical and personal care products and other chemicals affect the ecosystem of our planet as well as human health. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. Research continues to support the theory of endocrine disruption. However, endocrine disruption researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of tonicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis (2D/E) and MALDI-TOF mass spectrometry (MS) sr protein chip array and SELDI-TOF MS. Proteomics have an opportunity to play an important role in resolving the question of what role endocrine disruptors play in initiating human disease. Proteomics can also play an imfortant role in the evaluation of the risk assessment and use of risk management and risk communication tools required to address public health concerns related to notions of endocrine disruptors. Understanding the need for the proteomics and possessing knowledge of the developing biomakers used to abbess endocrine activity potential will he essential components relevant to the topic of endocrine disruptors.

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.