• Title/Summary/Keyword: 2차원 유한요소모형

Search Result 179, Processing Time 0.029 seconds

Numerical Analysis of Subsurface Flow in a Hillslope (자연 구릉지에서 지표하 흐름의 수치해석)

  • 최은호;남선우
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 1991
  • The governing equation of flow in porous media is developed on the bases of the continuity equation of fluid for transient flow through a saturated-unsaturated zone, and substitution of Darcy's law. The numerical solutions are obtained by finite element method based on the Galerkin principles weighted residuals. The analysis are carried out by using the unsteady storm data observed and rainfall intensities which are obtained by using the rainfall excess model in considering of the initial losses. The functional relationships between the hydraulic conductivity, capillary pressure head and volumetric water content are applied to the flow of water through unsaturated soil varied with changes of water content.

  • PDF

Efficient Three Dimensional Analysis of High-Rise Shear Wall Building with Openings (개구부가 있는 고층 벽식 구조물의 효율적인 3차원 해석)

  • 김현수;남궁계홍;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.351-365
    • /
    • 2002
  • The box system that is composed only of reinforced concrete walls and slabs we adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

IP Modeling and Inversion Using Complex Resistivity (복소 전기비저항을 이용한 IP 탐사 모델링 및 역산)

  • Son, Jeong-Sul;Kim, Junhg-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.

Assessment of Ultimate Bearing Capacity for an Embedded Wall by Closed-Form Analytical Solution (근사적인 해석법에 의한 근입된 벽체의 극한지지력 평가)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.23-36
    • /
    • 2006
  • This study presents the development of a new closed-form analytical solution for the ultimate bearing capacity of an embedded wall in a granular mass. The closed-form analytical solution consists of upper and lower bound solutions (UB and LB). The calculated values from these bound solutions were compared with the author's two-dimensional laboratory wall model loading test and finite element analysis in the plastic region. The comparison showed that ultimate bearing loads from both the model test and finite element analysis are located between UB and LB. In particular, the ultimate bearing load from LB showed good agreement with the ultimate bearing load values from both the model test and finite element analysis. However, the calculated value from the conventional empirical form subjected to plane-strain conditions was shown to be much smaller than the LB.

The influence of combining composite resins with different elastic modulus on the stress distribution of class V restoration: A three-dimensional finite element study (탄성계수가 다른 복합레진의 혼합수복이 5급 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.184-197
    • /
    • 2008
  • This study was to investigate the influence of combining composite resins with different elastic modulus, and occlusal loading condition on the stress distribution of restored notch-shaped non-carious cervical lesion using 3D finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity was modeled and filled with hybrid, flowable resin or a combination of both. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. Results showed that combining method such that apex was restored by material with high elastic modulus and the occlusal and cervical cavosurface margin by small amount of material with low elastic modulus was the most profitable method in the view of tensile stress that was considered as the dominant factor jeopardizing the restoration durability and promoting the lesion progression.

  • PDF

The influence of combining composite resins with different elastic modulus on the stress distribution of class V restoration: A three-dimensional finite element study (탄성계수가 다른 복합레진의 혼합수복이 5급 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.184-197
    • /
    • 2008
  • This study was to investigate the influence of combining composite resins with different elastic modulus, and occlusal loading condition on the stress distribution of restored notch-shaped non-carious cervical lesion using 3D finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity was modeled and filled with hybrid, flowable resin or a combination of both. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. Results showed that combining method such that apex was restored by material with high elastic modulus and the occlusal and cervical cavosurface margin by small amount of material with low elastic modulus was the most profitable method in the view of tensile stress that was considered as the dominant factor jeopardizing the restoration durability and promoting the lesion progression.

A Quantitative Analysis of Groundwater Flow into Underground Storage Caverns (지하저장공동의 지하수 유입량에 관한 정량적 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Cho, Woncheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1062-1066
    • /
    • 2004
  • 암반 내에 공동을 굴착하여 LPG 혹은 원유를 저장하는 경우 공동에서의 지하수 유입량은 공동상부의 수압과 공동내의 가스압과의 관계를 파악할 수 있는 정량적인 지표가 된다. 공동내의 유입량은 되도록 일정하게 유지되는 것이 굴착등의 시공단계와 공동 운영 및 유지관리면에서 유리하며, 유입량의 급증 혹은 급감이 일어나는 경우는 그 원인을 조기에 규명하여야 한다. 이를 위해서는 지하수위, 가스저장압, 수막공 주입압 등에 따른 공동주변의 유동장 해석, 공동내로의 지하수 유입량 해석을 실시해야 한다. 지하저장공동의 유입량 해석에 있어서는 공동의 정확한 형상을 반영하기 위해서 유한요소법이 보편적으로 사유되어 왔으나 한번 설정한 유한요소망으로부터 공동의 설계요소를 변경하는 작업은 수원하지 않아 설계전단계에서 공동 및 수막 시설의 다양한 배치에 따른 모의를 수행하는데는 다소 무리가 있다. 이러한 불편함은 경계부의 형상과 조건만으로 내부점에서의 미지변수 계산을 효과적으로 수행할 수 있는 경계요소법을 도입함으로써 극복할 수 있다. 따라서 본 연구에서는 지하공동으로 배수되는 유입량 산정을 위해 경계요소법을 근간으로 한 2차원 지하수 흐름모형을 구성하였고, 이를 지하저장공동이 위치한 A기지에 적용하여 상부경계조건인 지하수위의 변화, 수막공 주입압 등에 따른 공동내의 유입량과 공동저장압과의 관계를 정량적으로 분석하였다. 분석 결과를 지하저장공동의 운영 및 유지관리에 활용될 수 있도록 수식화하여 제시하였다.

  • PDF

Two-Dimensional Flow Analysis of Approach Channel for the Design of Spillway Guidewall (여수로 유도벽 설계를 위한 접근수로의 2차원 흐름해석)

  • Lee, Gil-Seong;Kim, Nam-Il
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.491-501
    • /
    • 1998
  • Numerical simulations were performed to analyse the flow pattern of the approach channel and to design the spillway guidewall for stable flow conditions. RMA-2, two dimensional finite element model which can easily represent complicated geometry was used, and model parameters were estimated from the observation data of hydraulic model test. Numerical experiments were made separately for the approach region and for the upstream region, and upstream boundary position of the hydraulic model beyond which the boundary effects are negligible was determined from the numerical results. For the stable flow condition in approach channel, alternative designs for guidewall were developed, and flow analysis for alternative designs was done through the numerical simulation. From the analysis of alternative design, we can see that the flow pattern in the approach channel is stable and the lateral stage difference disappears mostly before the spillway crest.

  • PDF

Infinite Elements for Analysis of Diffraction and Radiation Problems in the Vertical Plane (연직 2차원 회절 및 방사문제 해석을 위한 무한요소)

  • 박우선;이달수;오영민;정원무
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.235-243
    • /
    • 1991
  • This paper is concerned with developing infinite elements which are applicable to wave diffraction and radiation problems in the vertical plane. The near need region surrounding the solid body is modeled using conventional finite elements. but the far fold region is represented using the infinite elements developed in this study. The shape functions for the infinite elements are derived from the analytical eigenseries solution of the scattered waves in the far field region. The system matrices of the elements are constructed by performing the integration in the infinite direction analytically to achieve computational efficiency. Numerical analysis is carried out for two floating bodies with different cross-sectional shapes to prove the efficiency and validity of the elements. Numerical experiments are also performed to determine the suitable location of the infinite elements which directly affect accuracy and efficiency of the solution.

  • PDF

Numerical analysis of rock behavior with crack model implementation (균열모형을 이용한 암석거동의 수치해석)

  • 전석원
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.56-63
    • /
    • 1999
  • Rock behaves in a complex way due to the discontinuities. To describe the complicated failure and deformation behavior of rock, many researches were focused on the development of crack models. This study discusses the validity of the sliding and shear crack model to systematically fractured rock, i.e. coal. The model was also implemented into a numerical analysis. For that, a finite element program was modified in several ways. To describe the transverse isotropy in two-dimensional analysis, the stress-strain relationship was modified for the direction of the axis of symmetry. Also, the changes of the effective elastic moduli according to the crack growth were calculated. A simple example of two-dimensional laboratory uniaxial compression test was analyzed. The results coincided with the observations obtained from the laboratory tests.

  • PDF