• Title/Summary/Keyword: 2상 혐기성 소화

Search Result 27, Processing Time 0.024 seconds

Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes (음식 폐기물을 이용한 박테리아 셀룰로오스 생산 공정 잔류물의 혐기성 소화효율)

  • Jin, Sheng-De;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • This study was performed to examine the availability of anaerobic digestion of the remainders caused by bacterial cellulose production process using food wastes. They maybe to be considered as others second pollution sources. Thus, this study was targeted to minimize content of organic material and to obtain more energy in those remnants using two-phase UASB reactor. The working volume of first hydrolysis fermentor was 35 L (total 55 L) and the second methane fermentor was 40 L (total 50 L). The organic loading rate of hydrolysis fermentor was 3 g-VS/L${\cdot}$day and 25,000 ppm of $COD_{cr}$ for methane fermentor. The hydraulic retention time was 18 days for hydrolysis reactor and 33 days for methane reactor. The hydrolysis reactor and methane reactor were performed at 35, 40$^{\circ}C$ respectively. For the efficient stable performance, the composition of organic wastes at each stage was as follow; Food waste with bacterial culture remnants (1 : 1), bacterial cellulose remnants, bacterial cellulose culture remnants with food wastes saccharified solids (1 : 1). When the anaerobic digestion was performed stably at each stage, the COD removal efficiency was 88, 90, 91 % respectively. At this time, methane production rate was 0.26, 0.34, $0.32m^3\;CH_4/kg-COD_{remove}$. As well as the values of anaerobic digestion at third stage were more higher than values of anaerobic digestion using food wastes. It is clearly to say that the food wastes zero-emission system constructed in our lab is more efficient way to treat and reclaim food wastes.

Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems (실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리)

  • Heo, Ahn-Hee;Lee, Eun-Young;Kim, Hee-Jun;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1231-1238
    • /
    • 2008
  • This study was performed to evaluate the treatability of food waste leachate using lab-scale two-phase anaerobic digestion system. Effects of influent pH, hydraulic retention time (HRT), and recycle of methanogenic reactor effluent to the thermophilic acidogenic reactors were investigated. For methanogenic reactors, effects of internal solids recycle and temperature were studied. Performance of the acidogenic reactors was stable under the conditions of influent pH of 6.0 and HRT of 2 d with the recycle of methanogenic reactor effluent, and acidification and VS removal efficiency were about 30% and 40%, respectively. Up to the organic loading rate (OLR) of 7 g COD/L/d, effluent SCOD values of mesophilic and thermophilic methanogenic reactors either lower or kept the same with the internal solids recycle. Also, decreasing tendency in specific methane production (SMP) due to the organic loading increase became diminished with the internal solids recycle. Mesophilic methanogenic reactors showed higher TCOD removal efficiency and SMP than thermophilic condition under the same OLR as VSS was always higher under mesophilic condition. In sum, thermophilic acidogenesis-mesophilic methanogenesis system was found to be better than thermophilic-thermophilic system in terms of both organic removal and methane production.

Performance comparison of acidogenic fermentation and hydrogen fermentation using bench-scale leaching-bed reactors for food waste (벤치스케일 침출상 반응조를 이용한 음식폐기물 처리 시 신발효 및 수소발효의 거동특성 비교)

  • Han, Sun-Ki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.97-105
    • /
    • 2007
  • This study was conducted to compare the performances of acidogenic fermentation and hydrogen fermentation using bench-scale leaching-bed reactors for organic solid waste. Acidogenic fermenters were operated with dilution rates (D) of 2.0, 3.0 and $4.0d^{-1}$ after employing anaerobic sludge and hydrogen fermenters were operated with D of 2.0, 4.0 and $6.0d^{-1}$ after employing heat-treated anaerobic sludge. The highest chemical oxygen demand (COD) conversion efficiency (56.2%) was obtained in acidogenic fermentation with D of $3.0d^{-1}$. Only volatile fatty acid (VFA) was produced as a metabolite. On the other hand, hydrogen fermentation did not show higher COD conversion efficiency (49.3%) than acidogenic fermentation, but it produced hydrogen gas (5.1% of total COD) which was a clean and environmentally friendly fuel with a high energy yield. Therefore, either acidogenic fermentation or hydrogen fermentation could be applied to organic solid waste depending on the purpose of treatment, which could maximize the economics of anaerobic treatment.

  • PDF

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

A feasibility study of a pilot scale two-phase anaerobic digestion with ultra filtration for the treatment of garbage leachate (음식물 탈리액 처리를 위한 파일럿 규모의 막결합형 2상 혐기성 소화 공정 가능성 평가)

  • Lee, Eun-young;Heo, Ahn-hee;Kim, Hyung-kuk;Kim, Hee-jun;Bae, Jae-ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.539-545
    • /
    • 2009
  • A feasibility of a pilot scale two-phase anaerobic digestion with ultra filtration system treating garbage leachate were evaluated. The treatment system consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. The average COD removal efficiency of the treatment system was 95% up to the OLR of 3.1 g COD/L/d. The higher COD removal efficiency with membrane unit resulted from the removal of some portion of soluble organics by membrane as well as particulate materials. When the membrane unit was in operation, bulk liquid in acidogenic and methanogenic reactors was partially interchanged, which maintained the acidogenic reactor pH over 5.0 without external chemical addition. Also, with the production of methane in the acidogenic reactor, the organic loading rate of the methanogenic reactor reduced. The initial flux of the membrane unit was $50{\sim}60L/m^2/hr$, but decreased to $5 L/m^2/hr$ after 95 days of operation due to clogging caused by particulate materials such as fibrous materials in garbage leachate. To prevent clogging caused by particulate materials, a pretreatment system such as screening is required. With the improvement with membrane unit operation, the two-phase anaerobic digestion with ultra filtration system is expected to have the possibility of treating garbage leachate.

Effect of Different Liquid Manure Anaerobic Digestates on the Growth and Yield of Rice and the Optimum Application Concentration (혐기소화발효액비의 벼 생육 및 수량에 미치는 영향과 적정 시용량)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Ryoo, Jong-Won;Hwang, Sun-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.97-104
    • /
    • 2021
  • This research examined the effects of different liquid manure based anaerobic digestate on the growth and yield of rice compared to chemical fertilizer. The liquid manure was produced by aerobic fermentation from swine with cow or apple pomace anaerobic digestate and treated at different concentrations. The number of grains per panicle increased in both the liquid manure-treated and chemical fertilizer treated rice. The yield index did not vary significantly between the liquid manure and chemical fertilizer. An increased concentration of liquid manure did not correlate with increases in unhulled rice. However, pH and exchangeable K in the soil increased with an increase in liquid manure. In summary, we suggest a properly applied 100% liquid manure fertilizer can replace chemical fertilizer to reduce our excessive use of inorganic fertilizer.

Biogas Production Performance according to the Saturated and Unsaturated Fatty Acid Contents (포화·불포화 지방산 함량에 따른 바이오가스 생산 성능)

  • Kim, Soo Ah;Pang, Yeon Gyu;Kim, Sang Hun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.127-127
    • /
    • 2017
  • 우리나라 음식물 폐기물은 수분함량 및 유기물 함량이 높기 때문에 부패와 악취, 침출수의 원인이 된다. 하지만 이를 혐기 소화 처리한다면 구성성분에 따라 60-80%가 생분해되어(한국유기성폐자원학회, 2001) 친환경적으로 처리가능하고, 혐기소화 결과물로 발생한 메탄가스를 대체에너지로 사용할 수 있어 유기물을 효과적으로 처리할 수 있다. 그러나 유기성 폐기물은 계절 및 지역에 따라 구성성분의 비가 다르며, 성분 중 지방 함량이 많을 때 바이오가스 생산이 지연되어 생산효율 감소의 주된 원인이 된다(Kafle and Kim, 2013). 전국음식물 폐기물 중 지방함량이 높은 어육류의 발생량은 3차 조사(환경부, 2008)에 비해 2배 이상 증가하였고, 향후 음식 섭취의 서구화로 인한 육류 소비가 증가할 것으로 예상된다(환경부, 2013). 따라서 본 연구는 지방함량이 높은 유기물의 효율적 처리를 위해 지방산 종류에 따라 포화 불포화 지방산을 포함하는 부산물의 혐기소화 능력 및 바이오가스 생산 성능을 구명하는데 목적이 있다. 본 연구 결과, 불포화 지방산 함량이 높은 수준인 부산물의 바이오가스는 629.96-749.14 mL/g VS 이며, 포화 지방산 함량이 높은 수준의 부산물은 560.18-715.43 mL/g VS 였다. 불포화 지방산 함량이 25.31%-46.26%로 많아질수록 초기 순응기간은 13일에서 25일로 증가하였고, 총 바이오가스 생산량의 90%가 생산되는 기간인 T90은 57일에서 72일로 증가하여 바이오가스 생산 속도가 감소한 것으로 판단된다. 포화 지방산은 함량이 24.10-48.74%로 증가할수록 초기 순응기간의 변화는 없었고, T90은 69일에서 62일로 감소하였다. 또한 불포화 지방산이 많은 유기물은 모두 바이오가스 생산 과정에서 2단계의 지연현상을 보였지만, 포화지방산은 함량이 증가하여도 1단계의 지연현상을 보였다. 이러한 차이는 두 지방산에 관여하는 미생물의 차이(Diana, 2007)와 불포화 지방산의 굴곡된 형태가 지방산과 미생물이 상호 작용 방식에 악영향 미치기 때문으로 판단된다(Diana, 2013). 결론적으로, 두 지방산의 소화 방식은 차이가 있으며, 불포화 지방산 함량이 많은 유기물은 탄수화물 함량이 많은 유기물을 10% 이상 혼합하여 지연상을 감소시킬수 있다(Kim, 2017). 포화 지방산 함량이 많은 유기물은 초기 지연 현상 해결을 위한 연구가 추가적으로 요구된다.

  • PDF

Treatment of Garbage Leachate with Two-phase Anaerobic Digestion Coupled with Ultra Filtration (막결합형 2상 혐기성 소화 공정을 이용한 음식물 탈리액 처리)

  • Lee, Eun-Young;Kim, Hyung-Kuk;Giang, Luu Thi Thuy;Bae, Jae-Ho;Bae, Young-Shin;Won, Jong-Choul;Lee, Jae-Hoon;Park, Seung-Kyun;Cho, Yong-Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.997-1006
    • /
    • 2009
  • Organic removal efficiency and methane production rate, a feasibility of power generation from biogas, and the optimum conditions for membrane operation were evaluated for the pilot scale (5 tons/day) two-phase anaerobic digestion coupled with ultra filtration (TPADUF) system fed with garbage leachate. The TPADUF system is consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. When garbage leachate with 150 g/L of TCOD was fed to the TPADUF up to organic loading rate (OLR) of 11.1 g COD/L/d, the effluent TCOD was lower than 6 g/L and the average removal efficiencies of TCOD and SCOD were higher than 95%. The methane composition of the gas was 65%, and the methane yield was 39 $m^3/m^3$ garbage leachatefed, 260 $m^3$/tons $COD_{added}$, or 270 $m^3$/tons $COD_{removed}$, even there was some gas leak. The power production per consumed gas was 0.96 kWh/$m^3$ gas or 1.49 kWh/$m^3$ methane. This lower power production efficiency mainly due to the small capacity of gas engine (15 kW class). The membrane was operated at the average flux of 10 L/$m^2$/hr. When the flux decreased, washing with water and chemical (NaOCl) was conducted to restore the flux. In the TPADUF system, optimum pH could be maintained without alkali addition by recycling the membrane concentrate or mixed liquor of the methanogenic digester to the acidogenic reactor. Also, partial production of methane in the acidogenic reactor had a positive effect on lowering the OLR of the methanogenic reactor.

A Study on the Treatment of Distillery Wastewater by Single-phase and Two-phase Anaerobic Digestion (단상(單相) 및 2상(相) 혐기성(嫌氣性) 소화(消化)에 의한 주정폐수(酒精廢水) 처리(處理)에 관한 연구(硏究))

  • Choung, Young Kyoo;Rah, Seung Woo;Park, Joon Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1993
  • The objectives of this paper are to present data to illustrate how an advanced digestion process, two-phase digestion, can provide superior performance in terms of waste stabilization efficiency and net energy recovery. As the result, it is possible to separate enrichment cultures of acidogenic and methanogenic organisms in isolated environments by kinetic control involving manipulation of dilution rates. In single-phase digestion process, HRT and COD loading for effective operation were 14.29 days and 2.33kg $COD/m^3$ day, but two-phase digestion may be conducted efficiently at 7 days of HRT and 5.71kg $COD/m^3$ day of loading. Data from this studies showed that the two-phase process is better than single-phase digestion under all test conditions when compared on the bases of gas yield and production rate, reductions of COD and VS, buffer capacity, and unconverted volatile acids in the effluent.

  • PDF

Effects of Hydraulic Rentention Time on Anaerobic Digestion of the Mixture of Nightsoil and Septic Tank Sludge (소화조(消化槽)의 수리학적(水理學的) 체류시간(滯留時間)이 분뇨(糞尿)와 정화조(淨化槽)슬러지 혼합물(混合物)의 혐기성소화(嫌氣性消化)에 미치는 영향(影響))

  • Lee, Kwang Ho;Yang, Sang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.117-127
    • /
    • 1983
  • An experimental research was performed employing the two stage anaerobic digestion of the mixture of the nightsoil and septic tank sludge to determine the effects of various hydraulic retention time of the digestion on chemical characteristics and treatment effeciency, thus determining the proper retention time. Results of the research are as follows, 1. Volatile-acid decreased as HRT increased. 2. Alklinity and ammonia-N tended to increase as HRT increased as did pH values, however, were observed to be constant at higher HRT values than 15 days. 3. The removal efficiencies of TBOD, TCOD and VS increased as HRT increased. 4. The removal efficiency of volatile solid decreased as VS loading increased. 5. It was observed that the rates of gas production were: 0.33 with HRT of 5 days, 0.58 with HRT of 15 days and $0.57m^3/kg$ VS fed/day with HRT of 25 days respectively. It is believed that the highest rate of gas production was at HRT of 15 days. 6. The sludge settling experiment showed that the minimum settling time required to ensure the desired underflow concentraton was estimated to be 8.6 days.

  • PDF