• Title/Summary/Keyword: 2,6-naphthalene dicarboxylic acid(NDA)

Search Result 2, Processing Time 0.014 seconds

Oxidation of 2,6-Dimethylnaphthalene by Co-Mn-Br Based Homogeneous Catalyst (Co-Mn-Br계 균일촉매를 이용한 2,6-Dimethylnaphthalene의 산화반응)

  • Kim, Dong-Bum;Park, Seungdoo;Cha, Woonou;Roh, Hang-Duk;Kwak, Kyu Dae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.863-870
    • /
    • 1999
  • The catalytic performance of Co-Mn-Br system was performed in the 2,6-dimethylnaphthalene(DMN) oxidation at relatively mild reaction conditions such as $160^{\circ}C$ and $6kg/cm^2$. Experiments were conducted using a $2{\ell}$ batch reactor with varying the concentrations of catalysts. The reaction route of DMN oxidation was considered by measuring the concentration of intermediate species. As the intermediate species, 2-formyl-6-naphthoic acid, 2-methyl-6-naphthoic acid and 2-hydroxymethyl-6-methylnaphthalene are found. It was found that the yield of 2,6-naphthalene dicarboxylic acid(NDA) is largely dependent on the Co and Br concentrations. In addition, it was observed that color-b was closely related with Mn concentration in this experimental range. The burning loss of solvent could be reduced by controlling the concentration of Mn and Br. Addition of small amount of Ce and Cu compounds led to increase the NDA yields and decrease the burning amount of solvent.

  • PDF

Analytical Method Development of 2,6-dimethylnaphthalene Dicarboxylate (2,6-NDC) and 2,6-naphthalene Dicarboxylic Acid (2,6-NDA) in Poly (ethylene naphthalate) (PEN) (Poly (ethylene naphthalate) (PEN 수지)의 2,6-디메틸나프탈렌 디카복실레이트 (2,6-NDC)과 2,6-나프탈렌디카복실산(2,6-NDA) 분석법 확립)

  • Sung, Jun-Hyun;Oh, Jae-Myoung;Shin, Dong-Woo;Choi, Jae-Chon;Lim, Ho-Soo;Park, Se-Jong;Park, Geon-Woo;Kim, So-Hee;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2013
  • Poly (ethylene naphthalate) (PEN), which is likely to be widely used in various application due to good barrier properties, is manufactured by condensation polymerization of 2,6-dimethylnaphthalene dicarboxylate (2,6-NDC) or 2,6-naphthalene dicarboxylic acid (2,6-NDA) with ethylene glycol. In this study, an analytical method to determine monomers in food simulants, which might migrate from PEN food contact materials into food, was developed. The HPLC-UV method was validated for 2,6-NDC and 2,6-NDA. The obtained validation parameters were selectivity, sensitivity, linearity, precision and recovery. The simultaneous HPLC method was considered the be most effective analytical method to determine 2,6-NDC and 2,6-NDA in food simulants.