Oxidation of 2,6-Dimethylnaphthalene by Co-Mn-Br Based Homogeneous Catalyst

Co-Mn-Br계 균일촉매를 이용한 2,6-Dimethylnaphthalene의 산화반응

  • Received : 1999.05.08
  • Accepted : 1999.08.18
  • Published : 1999.10.10

Abstract

The catalytic performance of Co-Mn-Br system was performed in the 2,6-dimethylnaphthalene(DMN) oxidation at relatively mild reaction conditions such as $160^{\circ}C$ and $6kg/cm^2$. Experiments were conducted using a $2{\ell}$ batch reactor with varying the concentrations of catalysts. The reaction route of DMN oxidation was considered by measuring the concentration of intermediate species. As the intermediate species, 2-formyl-6-naphthoic acid, 2-methyl-6-naphthoic acid and 2-hydroxymethyl-6-methylnaphthalene are found. It was found that the yield of 2,6-naphthalene dicarboxylic acid(NDA) is largely dependent on the Co and Br concentrations. In addition, it was observed that color-b was closely related with Mn concentration in this experimental range. The burning loss of solvent could be reduced by controlling the concentration of Mn and Br. Addition of small amount of Ce and Cu compounds led to increase the NDA yields and decrease the burning amount of solvent.

본 연구에서는 촉매로 Co-Mn-Br계를 사용하고, 상대적으로 온화한 반응조건에서 2,6-Dimethylnaphthalene(DMN)의 산화 반응 특성과 촉매가 반응에 미치는 영향을 고찰하였다. 이를 위해 $2{\ell}$의 회분식 반응기를 이용하여 촉매의 농도를 조절하며 실험하였다. 먼저 반응시간에 따른 반응중간생성물의 농도변화를 분석하여 반응경로를 확인하였고, 그 결과 2-formyl-6-naphthoic acid, 2-methyl-6-naphthoic acid, 그리고 2-hydroxymethyl-6-methylnaphthalene이 반응중간물임을 확인할 수 있었다. 또한, 2,6-naphthalene dicarboxylic acid(NDA)의 수율은 Co와 Br의 농도에 많은 영향을 받는다는 것을 알 수 있었고, 제품의 품질 척도 중 하나인 color-b는 Mn의 농도와 밀접한 관련이 있는 것으로 나타났으며, 용매연소는 Mn과 Br의 농도조절로 줄일 수가 있었다. 조촉매로 Ce/Cu 화합물을 첨가함으로 NDA의 수율을 증가시키고 용매연소를 줄이는 결과를 얻을 수 있었다.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. Japanese R&D Trend Analysis, Advanced Materials-Phase VII, Report No. 2 Catalysts for Monomer Synthesis in the Polymer Industry Kansai Research Institute;Japanese R&D Trend Analysis
  2. 2,6-Naphthalene Dicarboxylic Acid Precursors, 91S12 CHEM SYSTEMS
  3. U. S. Patent 5,183,933 J. J. Harper;G. E. Kuhlmann
  4. U. S. Patent 5,144,066 N. Saitou;K. Hirota;R. Hasebe;K. Okuda;I. Katsumi
  5. U. S. Patent 5,453,538 J. L. Broeker;W. Partenheimer
  6. EUROPEAN PATENT 0 600 375 H. Iwane;T. Sugawara;K. Kujira;N. Szuki;T. Sakata
  7. EUROPEAN PATENT 0 361 840 D. A. Young
  8. EUROPEAN PATENT 0 721 931 H. Machide
  9. 日本 特許, 特開平6-65143 靑柳三仁;長谷川英雄;生夫目昭夫
  10. U. S. Patent 5,523,473 N. Saitou;K. Hirota;R. Hasebe;N. Okuda;I. Katsumi
  11. U. S. Patent 5,175,352 H. Iwane;T. Sugawara
  12. EUROPEAN PATENT 0 287 279 T. Matsude;A. Sasakawa;S. Hayashi;Y. Konai
  13. EUROPEAN PATENT 0 142 719 I. Hirose;T. Amemiya;T. Sakai
  14. EUROPEAN PATENT 0 496 264 H. Iwane;T. Sugawara
  15. EUROPEAN PATENT 0 204 119 I. Hirose
  16. GB Patent 2 187 744 S. Hayashi;T. matsuda;A. Sasakawa;Y. Konai
  17. 日本 特許, 特開平6-211732 橋本 圭同;失田瀋
  18. 日本 特許, 特開平6-211733 橋本 圭同;失田瀋
  19. EUROPEAN PATENT 0 439 007 T. Tanaka;M. Inari
  20. EUROPEAN PATENT 0 324 342 T. Tanaka;M. Inari
  21. Bull. Chem. Soc. Jpn v.68 Y. Kamiya;T. Hama;I. Kijima
  22. 촉매 v.33 박상언;조영도
  23. SUMMARY OF TECHNICAL INFORMATION for the MANUFACTURE OF TEREPHHTHALIC ACID AMOCO CHEM. CORP. R&D DEPARTMENT;K. J. Abrame(Compiled)
  24. 한국공업화학회지 v.7 김동범;차운오;곽규대
  25. INTRODUCTION to ORGANIC CHEMISTRY(3rd ed.) A. Streitwieser, Jr;C. H. Heathcock
  26. Process Chemistry Research Lab., Report No. 86-2242-650 Eastman Chemicals Division;Engineering Research Division
  27. CEC/SKI Technical Meeting Report CEC;SKI
  28. J. Am. Chem. Soc. v.92 J. M. Anderson;Jay K. Kochi
  29. Oxidation Communicationx v.5 no.Nos 3-4 On the decarboxylation of acetic acid during the catalytic oxidation of p-Xylene I. Matus;G. V. Putyrskaya
  30. Asian Journal of Chemistry v.9 R. S. Yamgar;U. N. Pol;S. S. Dodwad
  31. Kinetics and Catalysis v.30 M. Ignaczak;J. Dziegiec
  32. Indian Journal of Chemistry Section A v.37 Mohanty R. K;Das M;Das A. K