• Title/Summary/Keyword: 2,3,7,8,-Tetrachlorodibenzo-p-dioxin

Search Result 127, Processing Time 0.023 seconds

Panax ginseng Improves Senile Testicular Function in Rats

  • Hwang, Seock-Yeon;Sohn, Sang-Hyun;Wee, Jae-Joon;Yang, Jin-Bae;Kyung, Jong-Soo;Kwak, Yi-Seong;Kim, Sung-Won;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.327-335
    • /
    • 2010
  • We reported previously that the administration of Korean red ginseng water extract (KRG-WE) protected the guinea pig testis against damage induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (a potent endocrine disruptor). We also found that crude saponin from ginseng was the active ingredient responsible for this protection. Here, we examined the biological role of KRG-WE in an animal model of age-induced dysfunction of spermatogenesis. Twenty-four male Sprague-Dawley (six 2-month-old and eighteen 12-month-old) rats were used. The young and old control groups received only vehicle. The ginseng saponin (GS)- and KRG-WE-treated groups received GS (40 mg/kg body weight/day) and KRG-WE (200 mg/kg body weight/day), respectively, for 4 months. The number of cells, Sertoli cell index, Johnsen's score, and sex hormone levels decreased significantly with age. However, the administration of KRG-WE and GS markedly improved the number of germ cells, seminiferous tubular size, and Johnsen's score in the old rats. Ginseng produced a distinct testicular histological improvement in old rats. KRG-WE and GS elevated testosterone levels, while attenuating the aberrant increase in follicle stimulating hormone and luteinizing hormone levels. Sperm kinematics evaluated by a computer-assisted sperm analyzer demonstrated improvement in the percentage of motile sperm, progressive sperm motility, and curvilinear velocity associated with sperm quality, supporting the beneficial role of red ginseng in senile spermatogenesis. Overall, the total water extract had a more potent effect than the corresponding saponin fraction. In conclusion, Korean red ginseng rejuvenated age-induced testicular dysfunction. Additionally, the total water extract was more potent than the corresponding saponin fraction.

Tumorigenic Effects of Endocrine-disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;de la Cruz, Joseph;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4809-4813
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells, used as a tumor model, were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. The expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, was also down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analysis also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated diseases.

Tumorigenic Effects of Endocrine-Disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;Cruz, Joseph Dela;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5117-5121
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells were used as a tumorigenic model. These were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. Expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, were subsequently down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD and various concentrations of LRE showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analyses also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated disease.

The Effects of Gobonyangjeonbang Administration on Reproductive Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced Rats. (고본양정방 투여가 TCDD 유도 랫드의 생식독성에 미치는 영향)

  • OH, Ji Hye;Yang, Dong Hyun;Park, Un kyu;Cho, Chung Sik;Hwang, Seock Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.504-512
    • /
    • 2021
  • Sperm formation disorders and sperm quality degradation comprises the largest proportion of male infertility caused by TCDD. To solve this problem, this study examined the effects of Gobonyangjeonbang oriental medicine prescription on the endocrine function and reproductive toxicity-related indicators in rat-induced TCDD-induced reproductive. Male SD rats were divided into five groups of seven animals and tested. The normal control group was administered the vehicle and saline, the TCDD alone group was administered intraperitoneally with TCDD (2 ㎍/kg, weeks) and physiological saline, and the test group was administered orally by dividing GYB (75, 150, and 300 mg/kg) into three concentrations for six weeks. Weight loss was observed in all groups administered TCDD. Regarding the hormonal changes, a significant decrease in free testosterone was observed in the GYB 300 mg/kg group (p<0.01). In addition, some of the germ cell destruction, seminiferous tubular atrophy, and decrease in sperm count was improved in a concentration-dependent manner in the testicular tissue of the GYB-treated group. In addition, Johnsen's score and serotoli cell index (SCI) were improved in a concentration-dependent manner (p<0.05). Overall, GYB can be used in drug therapy rather than medical procedures to solve male infertility in the future.

Involvement of Intracellular Ca2+-and PI3K-Dependent ERK Activation in TCDD-Induced Inhibition of Cell Proliferation in SK-N-SH Human Neuronal Cells

  • Yang, Seun-Ah;Lee, Yong-Soo;Jin, Da-Qing;Jung, Jae-Wook;Park, Byung-Chul;Lee, Yoon-Seok;Paek, Seung-Hwan;Jeong, Tae-Cheon;Choi, Han-Gon;Yong, Chul-Soon;Yoo, Bong-Kyu;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD) has previously shown to induce neurotoxicity through intracellular $Ca^{2+}$ increase in rat neurons. In this study we investigated the role and signaling pathway of intracellular $Ca^{2+}$ in TCDD-induced inhibition of neuronal cell proliferation in SK-N-SH human neuronal cells. We found that TCDD(10nM) rapidly increased the level of intracellular $Ca^{2+}$, which was completely blocked by the extracellular $Ca^{2+}$ chelation with EGTA (1 mM) or by pretreatment of the cells with the non-selective cation channel blocker. flufenamic acid (200 ${\mu}M$). However, pretreatment of the cells with dantrolene (25 ${\mu}M$) and TMB-8(10 ${\mu}M$), intracellular $Ca^{2+}$-release blockers, or a voltage-sensitive $Ca^{2+}$ channel blocker, varapamil (100 ${\mu}M$), failed to block the TCDD-induced $Ca^{2+}$ increase in the cells. In addition, TCDD induced a rapid and transient activation of phatidvlinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2(ERK1/2), which was ingnificantly blocked by the pretreatment with BAPTA, an intracellular $Ca^{2+}$ chelator, and LY294002, a PI3K inhibitor. Furthermore, inhibitors of PI3K, ERK, or an intracellular $Ca^{2+}$ chelator further potentiated the anti-proliferative effect of TCDD in the cells. Collectively, the results suggest that intracellular $Ca^{2+}$ and PI3K-dependent activation of ERK 1/2 may be involved in the TCDD-induced inhibition of cell proliferation in SK-N-SH human neuronal cells.

Effects of Houttuynia Cordata thunb on the liver damage of TCDD-treated rats (TCDD를 투여한 rat의 간손상에 대한 어성초의 효과)

  • 하배진;하종명;이상현;이재화;정혜진;이상헌;김희진;이진영
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.457-462
    • /
    • 2003
  • Houttuynia Cordata thunb has been used as folk medicine for analgesics, beriberi, edema, hepatitis and icterus etc. We investigated, the effects of Houttuynia Cordata thunb administration on protective in liver of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) treated rats. Seven days after the injection of TCDD(1${\mu}g$/kg), Houttuynia Cordata thunb (200mg/kg) was administered into rats intraperitoneally for four weeks. We examined the antioxidative enzymatic activity by measuring the level of GOT, GPT in serum and MDA, GSH, GSSG, GPx, SOD and Catalase in liver tissue of rats. GOT activity of Houttuynia Cordata thunb and TCDD administered group(HTT) showed 49.00% of inhibitive effect compared to TCDD-treated abnormal group(TTA). GPT level of HTT group was decreased to the level of Non TCDD-treated group(NTT). MDA content in the TTA group was 1.27 times increased compared to NTT group. HTT group was inhibited by 69.53% compared to TTA group. GSH contents in HTT group was 1.91 times increased compared to TTA group. GSSG contents in HTT group was 46.72% decreased compared to TTA group. SOD and Catalase in TTA group were lower than in NTT group, but SOD and Catalase in HTT group were increased by 82% and 55.45% respectively compared to TTA group.

Protective Effects of Korean Panax Ginseng Extracts against TCDD-induced Toxicities in Rat (랫드에서 TCDD 투여에 의해 유도된 생체독성의 고려홍삼 추출물에 의한 억제 효과)

  • Choi, Soo-Jin;Sohn, Hyung-Ok;Shin, Han-Jae;Hyun, Hak-Cheol;Lee, Dong-Wook;Song, Yong-Bum;Lee, Soo-Hyun;Gang, Dong-Ho;Lim, Hak-Seob;Lee, Cheol-Won;Moon, Ja-Young
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.382-389
    • /
    • 2008
  • To achieve a better understanding of protective effects of water extracts of Panax ginseng against TCDD-induced toxicities, we monitored physiological and clinical changes in rat for 4 weeks after administrations of each Panax Ginseng extract or TCDD, and co-administration of the two materials. For this study, 120 male Sprague-Dawley (SD) rats weighing 190-210 g each (8 weeks old) were divided into four groups: TCDD-administered, co-administered group with TCDD and ginseng extract, ginseng extract-administered, and control group. The TCDD-administered group received single dose of TCDD in a corn oil vehicle ($25\;{\mu}g/kg$ body weight) by intraperitoneal administration on Day 1. The Panax ginseng extracts-administered group received intraperitoneally 100 mg/kg body weight every other day for one month. For the co-administered group with TCDD and ginseng extracts, Panax ginseng extracts were intraperitoneally administered to rats at 100 mg/kg body weight every other day for one month after a single intraperitoneal dose of $25\;{\mu}g$ of TCDD/kg body weight on Day 1. Panax ginseng extracts attenuated the mortality induced by TCDD administration. The extracts also slightly attenuated the TCDD-induced body weight loss. Administration of TCDD alone increased liver weight at 2, 5, and 16 days after administration of TCDD. Administration of Panax ginseng extracts rather decreased liver weight through whole the experimental period, but which was statistically insignificant. Administration of TCDD alone at $25\;{\mu}g/kg$ body weight increased both serum enzyme activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) at 32 days, indicating that liver damage occurred maximally at that time. Ginseng extract administration caused insignificant changes in serum ALT, but gradually decreased in AST as the exposure time increased. Coadministration of TCDD and ginseng extracts caused serum AST activity to significant recovery to normal value at 16 days and 32 days after exposure to TCDD. The extracts also significantly decreased the TCDD-induced ALT activity after 16 days of TCDD administration. These results suggest that Panax ginseng extracts may possess a protective effect against TCDD-induced toxicities including hepatotoxicity in rats.