• Title/Summary/Keyword: 2, 3-dioxygenase

Search Result 124, Processing Time 0.021 seconds

Characterization of $\beta$-Ketoadipate Pathway from Multi-Drug Resistance Bacterium, Acinetobacter baumannii DU202 by Proteomic Approach

  • Park, Soon-Ho;Kim, Jae-Woo;Yun, Sung-Ho;Leem, Sun-Hee;Kahng, Hyung-Yeel;Kim, Seung-Il
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.632-640
    • /
    • 2006
  • In this study, the biodegradative activities of monocyclic aromatic compounds were determined from the multi-drug resistant (MDR) Acinetobacter baumannii, which were studied in the form of clinical isolates from a hospital in Korea. These bacteria were capable of biodegrading monocyclic aromatic compounds, such as benzoate and p-hydroxybenzoate. In order to determine which pathways are available for biodegradation in these stains, we conducted proteome analyses of benzoate, and p-hydroxybenzoate-cultured A. baumannii DU202, using 2-DE/MS analysis. As genome DB of A. baumannii was not yet available, MS/MS analysis or de novo sequencing methods were employed in the identification of induced proteins. Benzoate branch enzymes [catechol 1,2-dioxygenase (CatA) and benzoate dioxygenase $\alpha$ subunit (BenA)] of the $\beta$-ketoadipate pathway were identified under benzoate culture condition and p-hydroxybenzoate branch enzymes [protocatechuate 3,4-dioxygenas $\alpha$ subunit (PcaG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaR)] of the $\beta$-ketoadipate pathway were identified under p-hydroxybenzoate culture condition, respectively, thereby suggesting that strain DU202 utilized the $\beta$-ketoadipate pathway for the biodegradation of monocyclic aromatic compounds. The sequence analysis of two purified dioxygenases (CatA and PcaGH) indicated that CatA is closely associated with the CatA of Acinetobacter radiresistance, but PcaGH is only moderately associated with the PcaGH of Acinetobacter sp. ADPI. Interestingly, the fused form of PcaD and PcaC, carboxymuconolactone decarboxylase (PcaCD), was detected on benzoate-cultured A. baumannii DU202. These results indicate that A. baumannii DU202 exploits a different $\beta$-ketoadipate pathway from other Acinetobacter species.

Predictive Significance of Promoter DNA Methylation of Cysteine Dioxygenase Type 1 (CDO1) in Metachronous Gastric Cancer

  • Kubota, Yo;Tanabe, Satoshi;Azuma, Mizutomo;Horio, Kazue;Fujiyama, Yoshiki;Soeno, Takafumi;Furue, Yasuaki;Wada, Takuya;Watanabe, Akinori;Ishido, Kenji;Katada, Chikatoshi;Yamashita, Keishi;Koizumi, Wasaburo;Kusano, Chika
    • Journal of Gastric Cancer
    • /
    • v.21 no.4
    • /
    • pp.379-391
    • /
    • 2021
  • Purpose: Promoter DNA methylation of various genes has been associated with metachronous gastric cancer (MGC). The cancer-specific methylation gene, cysteine dioxygenase type 1 (CDO1), has been implicated in the occurrence of residual gastric cancer. We evaluated whether DNA methylation of CDO1 could be a predictive biomarker of MGC using specimens of MGC developing on scars after endoscopic submucosal dissection (ESD). Materials and Methods: CDO1 methylation values (TaqMeth values) were compared between 33 patients with early gastric cancer (EGC) with no confirmed metachronous lesions at >3 years after ESD (non-MGC: nMGC group) and 11 patients with MGC developing on scars after ESD (MGCSE groups: EGC at the first ESD [MGCSE-1 group], EGC at the second ESD for treating MGC developing on scars after ESD [MGCSE-2 group]). Each EGC specimen was measured at five locations (at tumor [T] and the 4-point tumor-adjacent noncancerous mucosa [TAM]). Results: In the nMGC group, the TaqMeth values for T were significantly higher than that for TAM (P=0.0006). In the MGCSE groups, TAM (MGCSE-1) exhibited significantly higher TaqMeth values than TAM (nMGC) (P<0.0001) and TAM (MGCSE-2) (P=0.0041), suggesting that TAM (MGCSE-1) exhibited CDO1 hypermethylation similar to T (P=0.3638). The area under the curve for discriminating the highest TaqMeth value of TAM (MGCSE-1) from that of TAM (nMGC) was 0.81, and using the cut-off value of 43.4, CDO1 hypermethylation effectively enriched the MGCSE groups (P<0.0001). Conclusions: CDO1 hypermethylation has been implicated in the occurrence of MGC, suggesting its potential as a promising MGC predictor.

Formulation of a New Bacillus thuringiensis Strain NT0423. (새로운 Bacillus thuringiensis NT0423 균주의 제제화)

  • 김호산;노종열;이대원;장진희;제연호;우수동;김주경;유용만;강석권
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.358-364
    • /
    • 1998
  • New microbial-control agents were prepared with B. thuringiensis strain NT0423 having unique properties which are different with other B. thuringiensis strains belonging to serotype 7[Kor. J. Appl. Entomol. 32: 426-432.]. Three B. thuringiensis formulations designated as BioBact 10%, 20% and 40%, were made with various combinations of adjuvants. These formulations showed good physical properties in wettability, suspensibility, particle size and adherence. In addition the result of SDS-PAGE analysis indicated that $\delta$-endotoxins remain stably in all formulations. Among the tested formulations, two wettable powder formulations, BioBact 20% and 40%, comprising 20% and 40% of B. thuringiensis technical powder showed the effective control against diamondback moth larvae (Plutella xylostella) in laboratory and field tests. Especially, when compared with commercial B. thuringiensis formulations (A and B commercial formulations) in field evaluation, BioBact 20% and 40% formulations showed equal activity up to 80% lethality and a good persistence effect which remain on leaves at least 7 days.

  • PDF

DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases

  • Nair, Varun Sasidharan;Song, Mi Hye;Ko, Myunggon;Oh, Kwon Ik
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.888-897
    • /
    • 2016
  • Stable expression of Foxp3 is ensured by demethylation of CpG motifs in the Foxp3 intronic element, the conserved non-coding sequence 2 (CNS2), which persists throughout the lifespan of regulatory T cells (Tregs). However, little is known about the mechanisms on how CNS2 demethylation is sustained. In this study, we found that Ten-Eleven-Translocation (Tet) DNA dioxygenase protects the CpG motifs of CNS2 from re-methylation by DNA methyltransferases (Dnmts) and prevents Tregs from losing Foxp3 expression under inflammatory conditions. Upon stimulation of Tregs by interleukin-6 (IL6), Dnmt1 was recruited to CNS2 and induced methylation, which was inhibited by Tet2 recruited by IL2. Tet2 prevented CNS2 re-methylation by not only the occupancy of the CNS2 locus but also by its enzymatic activity. These results show that the CNS2 methylation status is dynamically regulated by a balance between Tets and Dnmts which influences the expression of Foxp3 in Tregs.

Construction of a Bioluminescent Reporter Using the luc Gene and meta-Cleavage Dioxygenase Promoter for Detection of Catecholic Compounds

  • Park, Sang-Ho;Lee, Dong-Hun;Oh, Kye-Heon;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.183-186
    • /
    • 2000
  • Several types of bioluminescent reporter strains have been developed for the detection and monitoring of pollutant aromatics contaminating the environment. In this study, a bioluminescent reporter strain, E. coli SHP3, was constructed by fusing the luc gene of firefly luciferase with the promoter of pcbC responsible for the meta-cleavage of aromatic hydrocarbons. the bioluminescence expressed by the luc gene in the reporter was well triggered by the promoter when it was exposed to 2,3-dihydroxybiphenyI (2,3-DHBP) at 0.5 to 1 mM concentrations. The bioluminescent response was more extensive when the reporter strain was exposed to 5 mM catechol and 2 mM 4-chlorocatechol. These different types of bioluminescent responses by E. coli SHP3 appeared to be characterized by the nature of the aromatics to stress. Since E. coli SHP3 responded to 2,3-DHBP quite sensitively, this reporter strain could be applied for detecting some catecholic pollutants.

  • PDF

Improved Degradation of 4-Chlorobiphencyl, 2,3-Dihydroxybiphenyl, and Catecholic Compounds by Recombinant Bacterial Strains

  • Kim, Ji-Young;Kim, Youngsoo;Lee, Kyoung;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • The pcbC gene encoding (4-chloro-)2,3-dihydroxybiphenyl dioxygenase was cloned from the genomic DNA of Pseudomonas sp. P20 using pKT230 to construct pKK1. A recombinant strain, E. coli KK1, was selected by transforming the pKK1 into E. coli XL1-Blue. Another recombinant strain, Pseudomonas sp. DJP-120, was obtained by transferring the pKK1 of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation. Both recombinant strains showed a 23.7 to 26.5 fold increase in the degradation activity to 2,3-dihydroxybiphenyl compared with that of the natural isolate, Pseudomonas sp. DJ-12. The DJP-120 strain showed 24.5, 3.5, and 4.8 fold higher degradation activities to 4-chlorobiphenyl, catechol, and 3-methylcatechol than DJ-12 strain, respectively. The pKK1 plasmid of both strains and their ability to degrade 2,3-dihydroxybiphenyl were stable even after about 1,200 generations.

  • PDF

Expression of COX-2 and IDO by Uteroglobin Transduction in NSCLC Cell Lines (비소세포폐암 세포주에서 Uteroglobin Transduction이 COX-2 및 IDO의 발현에 미치는 영향)

  • Park, Gun Min;Lee, Sang-Min;Yim, Jae-Joon;Yang, Seok-Chul;Yoo, Chul Gyu;Lee, Choon-Taek;Han, Sung Koo;Sim, Young-Soo;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.4
    • /
    • pp.274-279
    • /
    • 2009
  • Background: Uteroglobin (UG) is a secretary protein that has strong immunomodulatory properties, and which is synthesized in most epithelia including lung tissue. Overexpression of UG is associated with decreased expression of cyclooxygenase (COX)-2 and suppression of cancer cell growth. Indoleamine 2,3-dioxygenase (IDO) catalyzes tryptophan along the kynurenine pathway, and both the reduction in local tryptophan and the production of tryptophan metabolites contribute to the immunosuppressive effects of IDO. Methods: In this study, we investigated the pattern of expression of COX-2 and IDO, and the effect of UG transduction in the expression of COX-2 and IDO in several non-small cell lung cancer cell lines, especially A549. Results: Both COX-2 and IDO were constitutionally expressed in A549 and H460 cells, and was reduced by UG transduction. In A549 cells, the slightly increased expression of COX-2 and IDO with the instillation of interferon-gamma (IFN-$\gamma$) was reduced by UG transduction. However, the reduced expression of COX-2 and IDO by UG transduction was not increased with IFN-$\gamma$ instillation in A549 cells. In both the A549 COX-2 sense and the A549 COX-2 anti-sense small interfering RNA (siRNA)-transfected cells, IDO was expressed; expression was reduced by UG transduction, irrespective of the expression of COX-2. Conclusion: The results suggest that the anti-proliferative function of UG may be associated with the immune tolerance pathway of IDO, which is independent of the COX-2 pathway.

Biodegradation of Recalcitrant Halogen Substituted-Phenol (난분해성 할로겐 치환 Phenol의 분해)

  • Lee, Geon;Lee, Sang-Joon;Lee, Jong-Kun
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.92-101
    • /
    • 1992
  • Halogen substituted-phenol and analog phenol degrading strains were identified as Aeromonas, Moraxella, and Flavobacterium genus. Optimal degrading condition was generally 50~100 $\mu$M substituted-phenol as carbon source, $NH_4NO_3$ as nitrogen source, 30$\circ$C , and initial pH 7.2. $\rho$-Chlorophenol degrading strain of Aeromonas sp. C4 had biodegradability to the various substituted-phenols. Flavobacterium sp. M9 had substrate specificity to methyl substituted-function. Catechol was cleavaged by catechol 1, 2-dioxygenase in Aeromonas sp. C4, Moraxella sp. N7, and Flavobacterium sp. M9.

  • PDF

Versatile Catabolic Properties of Tn4371-encoded bph Pathway in Comamonas testosteroni (Formerly Pseudomonas sp.) NCIMB 10643

  • Kim, Jong-Soo;Kim, Ji-Hyun;Ryu, Eun-Kyeong;Kim, Jin-Kyoo;Kim, Chi-Kyung;Hwang, In-Gyu;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.302-311
    • /
    • 2004
  • Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643 can grow on biphenyl and alkylbenzenes $(C_2-C_7)$ via 3-substituted catechols. Thus, to identify the genes encoding the degradation, transposon-mutagenesis was carried out using pAG408, a promoter-probe mini-transposon with a green fluorescent protein (GFP), as a reporter. A mutant, NT-1, which was unable to grow on alkylbenzenes and biphenyl, accumulated catechols and exhibited an enhanced expression of GFP upon exposure to these substrates, indicating that the gfp had been inserted in a gene encoding a broad substrate range catechol 2,3-dioxygenase. The genes (2,826 bp) flanking the gfp cloned from an SphI-digested fragment contained three complete open reading frames that were designated bphCDorfl. The deduced amino acid sequences of bphCDorfl were identical to 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (BphD), and OrfI, respectively, that are all involved in the degradation of biphenyl/4-chlorobiphenyl (bph) by Ralstonia oxalatica A5. The deduced amino acid sequence of the orfl revealed a similarity to those of outer membrane proteins belonging to the OmpW family. The introduction of the bphCDorfl genes enabled the NT-l mutant to grow on aromatic hydrocarbons. In addition, PCR analysis indicated that the DNA sequence and gene organization of the bph operon were closely related to those in the bph operon from Tn4371 identified in strain A5. Furthermore, strain A5 was also able to grow on a similar set of alkylbenzenes as strain NCIMB 10643, demonstrating that, among the identified aromatic hydrocarbon degradation pathways, the bph degradation pathway related to Tn4371 was the most versatile in catabolizing a variety of aromatic hydrocarbons of mono- and bicyclic benzenes.

SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma

  • Shen, Qingyu;Nam, Suk Woo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.57-58
    • /
    • 2018
  • An accurate diagnostic marker for detecting early-stage hepatocellular carcinoma (eHCC) is clinically important, since early detection of HCC remarkably improves patient survival. From the integrative analysis of the transcriptome and clinicopathologic data of human multi-stage HCC tissues, we were able to identify barrier-to-autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and splicing factor 3b subunit 4 (SF3B4) as early HCC biomarkers which could be detected in precancerous lesions of HCC, with superior capabilities to diagnose eHCC compared to the currently popular HCC diagnostic biomarkers: GPC3, GS, and HSP70. We then showed that SF3B4 knockdown caused G1/S cell cycle arrest by recovering $p27^{kip1}$ and simultaneously suppressing cyclins, and CDKs in liver cancer cells. Notably, we demonstrated that aberrant SF3B4 overexpression altered the progress of splicing progress of the tumor suppressor gene, kruppel like factor 4 (KLF4), and resulted in non-functional skipped exon transcripts. This contributes to liver tumorigenesis via transcriptional inactivation of $p27^{kip1}$ and simultaneous activation of Slug genes. Our results suggest that SF3B4 indicates early-stage HCC in precancerous lesions, and also functions as an early-stage driver in the development of liver cancer.