• Title/Summary/Keyword: 2, 3-dioxygenase

Search Result 124, Processing Time 0.027 seconds

Family-Based Association Study of Tryptophan-2,3 Dioxygenase(TDO2) Gene and Autism Spectrum Disorder in the Korean Population (한국인 자폐 스펙트럼장애에서 Tryptophan 2,3 Dioxygenase(TDO2)유전자 다형성-가족 기반 연구)

  • Kim, Soon-Ae;Park, Mi-Ra;Cho, In-Hee;Yoo, Hee-Jeong
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.123-129
    • /
    • 2007
  • Objectives: Autism is a complex neurodevelopmental spectrum disorder with a strong genetic component. Previous neurochemical and genetic studies have suggested the possible involvement of the serotonin system in autism. Tryptophan 2,3-dioxygenase(TDO2) is the rate-limiting enzyme in the catabolism of tryptophan, which is the precursor of serotonin synthesis. The aim of this study was to investigate the association between the TDO2 gene and autism spectrum disorders(ASD) in a Korean population. Methods: The patients were diagnosed with ASD on the basis of the DSM-IV diagnostic classification outlined in the Korean version of the Autism Diagnostic Interview-Revised and Autism Diagnostic Observation Schedule. The present study included the detection of four single nucleotide polymorphisms(SNPs) in the TDO2 gene(rs2292536, rs6856558, rs6830072, rs6830800) and the family-based association analysis of the single nucleotide polymorphisms in Korean ASD trios using a transmission disequilibrium test(TDT) and haplotype analysis. The family trios of 136 probands were included in analysis. 87.5% were male and 86.0% were diagnosed with autism. The mean age of the probands was $78.5{\pm}35.8$ months(range: 26-264 months). Results: Two SNPs showed no polymorphism, and there was no significant difference in transmission in the other two SNPs. We also could not find any significant transmission in the haplotype analysis(p>.05). Conclusion: We could not find any significant statistical association between the transmission of SNPs in the TDO2 gene and ASD in a Korean population. This result may not support the possible involvement of the TDO2 gene in the development of ASD, and further exploration might be needed to investigate other plausible SNP sites.

  • PDF

Cloning of pcb Genes in Pseudomonas sp.P20 Specifying Degradation of 4-Clorobiphenyl (4-Chlorobiphenyl을 분해하는 Pseudomonas sp. P20의 pcb 유전자군의 클로닝)

  • 남정현;김치경
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 1994
  • Pseudomonas sp. P20 was a bacterial isolate which has the ability to degrade 4-chlorobi- phenyl(4CB) to 4-chlorobenzoic acid via the process of meta-cleavage. The recombinant plasmid pCK1 was constructed by insetting the 14-kb EcoRI fragment of the chromosomal DNA containing the 4CB-degrading genes into the vector pBluescript SK(+). Subsequently, E. coli XL1-Blue was transformed with the hybrid plasmid producing the recombinant E. coli CK1. The recombinant cells degraded 4CB and 2,3-dihydroxybiphenyl(2,3-DHBP) by the pcbAB and pcbCD gene products, respectively. The pcbC gene was expressed most abundantly at the late exponential phase in E. coli CK1 as well as in Pseudomonas sp. P20, and the level of the pcbC gene product, 2,3-DHBP dioxygenase, expressed in E. coli CK1 was about two-times higher than in Pseudomonas sp. P20. The activities of 2,3-DHBP dioxygenase on catechol and 3-methylcatechol were about 26 to 31% of its activity on 2,3-DHBP, but the enzyme did not reveal any activities on 4-methylcatechol and 4-chlorocatechol.

  • PDF

Characterization and N Terminal Amino Acid Sequence Analysis of Catechol 1,2-Dioxy-genase from Benzoate Degrading Acinetobacter sp. KS-1 (Benzoate 분해세균 Acinetobacter sp. kS-1에서 분리된 catechol 1,2-dioxygenase의 특성 및 N 말단 아미노산 서열 분석)

  • 오계헌;송승열;김승일;윤경하
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.74-80
    • /
    • 2002
  • The purpose of this work was to investigate the characterization and sequence of catechol 1,2-dioxygenase (Cl,2O) purified from Acinetobacter sp. KS-1 which was grown on benzoate as a sole carbon source. Cl,2O demonstrated its enzyme activity to catechol and 4-methylcatechol. The optimum temperature of Cl,2O was $35^{\circ}C$, and the optimal pH was in the range from pH 7.5 to 9.0. $Ag^{+}$, $Hg^{+}$, and $Cu^{2+}$ showed inhibitory effect on the activity of Cl,2O. Molecular weight of the enzyme was determined to approximately 36 kDa by SDS-PAGE and 7-terminal amino acid sequence of Cl,2O was analyzed as $^{1}MNYQQIDALVKQMNVDTAKG^{20}$and exhibited 95% sequence homology with that of Cl,2O from Acinetobacter radioresistens In addition, trypsin digestion and peptide mapping were performed for internal sequencing analysis. Molecular weights of three digested peptide fragments were analyzed as 966.3 Da, 1933.8 Da and 2081.7 Da by MALDI-TOF, which were matched with each internal sequences $^{1}SQSDFNLRR^{9}\, ^{1}HGNRPSHVHYFNSAPGYR^{18}\, ^{1}TIEGPLYVAGAPESVGFAR^{19}$) of. A. radioresistens. PCR product was amplified with the degenerated primers derived from N-terminal and each internal amino acid sequences.

Induction of Indoleamine 2,3-dioxygenase (IDO) Enzymatic Activity Contributes to Interferon-Gamma Induced Apoptosis and Death Receptor 5 Expression in Human Non-small Cell Lung Cancer Cells

  • Chung, Ting Wen;Tan, Kok-Tong;Chan, Hong-Lin;Lai, Ming-Derg;Yen, Meng-Chi;Li, Yi-Ron;Lin, Sheng Hao;Lin, Chi-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7995-8001
    • /
    • 2014
  • Interferon-gamma (IFN-${\gamma}$) has been used to treat various malignant tumors. However, the molecular mechanisms underlying the direct anti-proliferative activity of IFN-${\gamma}$ are poorly understood. In the present study, we examined the in vitro antitumor activity of IFN-${\gamma}$ on two human non-small-cell lung carcinoma (NSCLC) cell lines, H322M and H226. Our findings indicated that IFN-${\gamma}$ treatment caused a time-dependent reduction in cell viability and induced apoptosis through a FADD-mediated caspase-8/tBid/mitochondria-dependent pathway in both cell lines. Notably, we also postulated that IFN-${\gamma}$ increased indoleamine 2,3-dioxygenase (IDO) expression and enzymatic activity in H322M and H226 cells. In addition, inhibition of IDO activity by the IDO inhibitor 1-MT or tryptophan significantly reduced IFN-${\gamma}$-induced apoptosis and death receptor 5 (DR5) expression, which suggests that IDO enzymatic activity plays an important role in the anti-NSCLC cancer effect of IFN-${\gamma}$. These results provide new mechanistic insights into interferon-${\gamma}$ antitumor activity and further support IFN-${\gamma}$ as a potential therapeutic adjuvant for the treatment of NCSLC.

Pseudomonas sp. Strain DJ77에서 Rieske-Type의 Ferredoxin을 암호화하는 phnR 유전자의 구조

  • Kim, Sungje;Park, Yong-Chjun;Kim, Chi-Kyung;Lim, Jai-Yun;Lee, Ki-Sung;Min, Kyung-Hee;Kim, Young-Chang
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.367-373
    • /
    • 1997
  • One of the three components of the phenanthrene dioxygenase which is required for conversion of phenanthrene to cis-phenanthrene dihydrodiol, Rieske-type ferredoxin encoded by phnR has been cloned and sequenced from Pseudomonas sp. strain DJ77. The gene phnR is positioned at the downstream of phnQ encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase. The PhnR ferredoxin contains 108 amino acids with a Mr of 11,355. The deduced amino acid sequence of the PhnR ferredoxin is 35-79% identical to those of homologous ferredoxins encoded by various genes.

  • PDF

Identification of HGD mutations in an alkaptonuria patient: using the Internet to seek rare diseases

  • Cho, Sang-Yeun;Kim, Ja Hye
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.17-19
    • /
    • 2018
  • Alkaptonuria (AKU, OMIM: 203500) is a rare autosomal recessive disorder of tyrosine metabolism due to a defect of enzyme activity, homogentisate 1,2-dioxygenase (HGD). The patients with AKU initially presented with dark urine discoloration, and ochronosis and arthritis develop after third decades of life. With advances of Internet resources, web-based health seekers for rare disease are increasing. Here, we report the case of an 18-year-old boy with AKU who visited our center due to dark black urine based on self-diagnosis via web searching of this rare condition. Compound heterozygous mutations in HGD gene, IVS5+3A>C and IVS12+6T>C were identified and both of mutations were detected in his parents. Our case illustrates the utility of publicly available Internet resources for diagnosis of rare disease.

Biodegradation of Aromatic Compounds by Nocardioform Actinomycetes

  • CHA CHANG-JUN;CERNIGLIA CARL E.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.157-163
    • /
    • 2001
  • Mycolic acid-containing gram-positive bacteria, so called nocardioform actinomycetes, have become a great interest to environmental microbiologists due to their metabolic versatility, multidegradative capacity and potential for bioremediation of priority pollutants. For example, Rhodococcus rhodochrous N75 was able to metabolize 4-methy1catechol via a modified $\beta$-ketoadipate pathway whereby 4-methylmuconolactone methyl isomerase catalyzes the conversion of 4-methylmuconolactone to 3-methylmuconolactone in order to circumvent the accumulation of the 'dead-end' metabolite, 4-methylmuconolactone. R. rhodochrous N75 has also shown the ability to transform a range of alkyl-substituted catechols to the corresponding muconolactones. A novel 3-methylmuconolactone-CoAsynthetase was found to be involved in the degradation of 3-methylmuconolactone, which is not mediated in a manner analogous to the classical $\beta$-ketoadipate pathway but activated by the addition of CoA prior to hydrolysis of lactone ring, suggesting that the degradative pathway for methylaromatic compounds by gram-positive bacteria diverges from that of proteobacteria. Mycobacterium sp. Strain PYR-l isolated from oil-contaminated soil was capable of mineralizing various polyaromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, pyrene, fluoranthrene, 1-nitropyrene, and 6-nitrochrysene. The pathways for degradation of PAHs by this organism have been elucidated through the isolation and characterization of chemical intermediates. 2-D gel electrophoresis of PAH-induced proteins enabled the cloning of the dioxygenase system containing a dehydrogenase, the dioxygenase small ($\beta$)-subunit, and the dioxygenase large ($\alpha$)-subunit. Phylogenetic analysis showed that the large a subunit did not cluster with most of the known sequences except for three newly described a subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. 2-D gel analysis also showed that catalase-peroxidase, which was induced with pyrene, plays a role in the PAH metabolism. The survival and performance of these bacteria raised the possibility that they can be excellent candidates for bioremediation purposes.

  • PDF

Overexpression of indoleamine 2,3-dioxygenase correlates with regulatory T cell phenotype in acute myeloid leukemia patients with normal karyotype

  • Arandi, Nargess;Ramzi, Mani;Safaei, Fatemeh;Monabati, Ahmad
    • BLOOD RESEARCH
    • /
    • v.53 no.4
    • /
    • pp.294-298
    • /
    • 2018
  • Background Production of immunosuppressive enzymes such as indoleamine 2,3-dioxygenase (IDO) is one of the strategies employed by hematologic malignancies, including acute myeloid leukemia (AML), to circumvent immune surveillance. Moreover, IDO has the ability to convert $CD4^+CD25^-$ conventional T cells into regulatory T cells (Tregs). In this study, we evaluated the expression of IDO in cytogenetically normal acute myeloid leukemia (CN-AML) patients and its correlation with the Treg marker, FOXP3, as well as clinical and laboratory parameters. Methods Thirty-seven newly diagnosed CN-AML patients were enrolled in our study along with 22 healthy individuals. The expression of the IDO and FOXP3 genes was analyzed by SYBR Green real-time PCR. Results Both IDO and FOXP3 were highly upregulated in CN-AML patients compared to control groups (P=0.004 and P=0.031, respectively). A positive correlation was observed between IDO and FOXP3 expression among AML patients (r=0.512, P=0.001). Expression of IDO and FOXP3 showed no significant correlation with laboratory parameters such as white blood cell and platelet counts, hemoglobin levels, bone marrow blast percentage, gender, and FLT3 mutation status (P>0.05). Conclusion Higher IDO expression in CN-AML patients may be associated with an increased Treg phenotype which may promote disease progression and lead to poor prognosis of CN-AML patients.

Analysis of Enzymes of Stenotrophomonas maltophilia LK-24 Associated with Phenol Degradation (Stenotrophomonas maltophilia LK-24의 페놀분해 관련 효소)

  • Kim, Jeong-Dong;Kang, Kook-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • The analysis of enzymes associated with metabolism of phenolics by Stenotrophomonas maltophilia LK-24 was conducted. To identify metabolites of phenol and phenol compound, we investigated enzymes of S. maltophilia LK-24 associated with degradation of phenolics. We found that phenol hydrolase, catechol-2.3-dioxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, 2-hydroxymuconic semialdehyde hydroxylase and acetaldehyde dehydrogenase were activated. The results showed that phenolics were gone through the meta-pathway ring cleavage. The results will contribute greatly to understand metabolic pathways of phenol and it is possible to make some assessment of the feasibility of using S. maltophilia LK-24 for the treatments of phenolic-contaminated waste streams.