• Title/Summary/Keyword: 2, 3-dioxygenase

Search Result 124, Processing Time 0.031 seconds

Characteristics of Catechol 2,3-Dioxygenase Produced by 4-Chlorobenzoate-degrading Pseudomonas sp. S-47

  • Kim, Ki-Pil;Seo, Dong-In;Min, Kyung-Hee;Ka, Jong-Ok;Park, Yong-Keun;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.295-299
    • /
    • 1997
  • Pseudomonas sp. S-47 is capable of transforming 4-chlorobenzoate to 4-chlorocatechol which is subsequently oxidized bty meta-cleavage dioxygenase to prodyce 5-chloro-2-hydroxymuconic semialdehyde. Catechol 2,3-dioxygenase (C23O) produced by Pseudomonas sp. S-47 was purified and characterized in this study. The C23O enzyme was maximally produced in the late logarithmic growth phase, and the temperature and pH for maximunm enzyme activity were $30{\sim}35^{\circ}C$ and 7.0, respectively. The enzyme was purified and concentrated 5 fold from the crude cell extracts through Q Sepharose chromatography and Sephadex G-100 gel filtration after acetone precipitation. The enzyme was identified as consisting of 35 kDa subunits when analyzed by SDS-PAGE. The C23O produced by Pseudomonas sp. S-47 was similar to Xy1E of Pseudomonas putida with respect to substrate specificity for several catecholic compounds.

  • PDF

Analysis of N- Terminal Amino Acid Sequence of Catechol 2,3-dioxygenase from Aniline Degrading Delftia sp. JK-2 (Aniline 분해세균 Delftia sp. JK-2에서 분리된 Catechol 2,3-dioxygenase의 N-말단 아미노산 서열 분석)

  • Hwang Seon-Young;Kahng Hyung-Yeel;Oh Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • The aim of this work was to investigate the N-terminal amino acid sequence of catechol 2,3-dioxygenase isolated from Delftia sp. JK-2, which could utilize aniline as sole carbon, nitrogen and energy source. Molecular weight of the enzyme was determined to approximately 35 kDa by SDS-PAGE. N-terminal amino acid sequence of C2,3O from strain JK-2 was $^1MGVMRIGHASLKVMDMDAAVRHYENV^{26}$, and exhibited high sequence similarity with that of C2,3O from Pseudomonas sp., Comamonas sp. JS765, Comamonas test-osteroni, or Burkholderia sp. RP007. Approximately 950-bp C2,3O was obtained through PCR using the primers derived from N-terminal amino acid sequence. Analysis of the DNA sequence revealed that the deduced 296 amino acid sequences were determined, and it showed $100\%$ identity with C2,3O from Pseudomonas sp. AW-2 and $97\%$ similarity with Comamonas sp. JS765.

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria from a Sandbank (갯벌에서 분리한 3,4-Dichloroaniline 분해 미생물의 특성)

  • Kim, Young-Mog
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.275-281
    • /
    • 2006
  • The compound 3,4-dichloroaniline (DCA) is an aromatic amine used as an intermediate product in the synthesis of herbicides, azo-dyes and harmaceuticals. It is also a degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as active agent in the cosmetic industry. 3,4-DCA, however, is considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. A bacterium capable of growth on 3,4-DCA was isolated by dilution method from 3,4-DCA-containing enrichment culture. Finally, a strain, YM-14, capable of degrading efficiently 3,4-DCA was isolated from a sandbank. The isolated strain, YM-14 was identified to be Arthrobacter sp.. Fifty ppm 3,4-DCA in 1/10 LB media was completely degraded by the growth of Arthrobacter sp. YM-14 for 12 h at $30^{\circ}C$. The isolated strain is capable of growth on 3,4-DCA as sole carbon source and also able to degrade other chloroaniline compounds. Also, the isolated strain showed high level of catechol 1,2-dioxygenase activity by 3,4-DCA exposure. The catechol 1,2-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation.

  • PDF

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria (3,4-Dichloroaniline 분해 미생물의 분리 및 특성)

  • Kim, Young-Mog;Park, Kun-Ba-Wui;Kim, Won-Chan;Han, Won-Sub;Yu, Choon-Bal;Rhee, In-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.245-249
    • /
    • 2007
  • Chloroanilines are widely used in the production of dyes, drugs and herbicides. Chloroanilines, however, are considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. With the increase of necessity of bioremediation, this study was conducted to isolate the chloroanilines-degrading bacteria. A bacterium capable of growth on 3,4-dichloroaniline (DCA) was isolated by the 3,4-DCA-containing enrichment culture. The strain KB35B was identified as Pseudomonas sp. and also able to degrade several chloroanilines. The isolated strain showed high level of catechol 2,3-dioxygenase activity in the presence of 3,4-DCA. The activity of catecho1 2,3-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation. The activity toward 4-methykatechol was 60.6% of that of catechol, while the activity toward 3-methylcatechol and 4-chlorocatechol were 27.0 and 13.5%, respectively.

Characterization of Human ${\beta}-Carotene$ 15,15-dioxygenase Isolated from Recombinant Escherichia coli (유전자 재조합 기술에 의하여 제조된 인간 ${\beta}-carotene$ 15,15'-dioxygenase의 반응특성)

  • Shin, Won-Phil;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.440-447
    • /
    • 2004
  • Characteristics of human ${\beta}-carotene$ 15,15'-dioxygenase isolated by recombinant DNA technology was elucidated. Optimal pH and temperature were 9.0 and $40^{\circ}C$, respectively. Enzyme activity was temperature-sensitive. Enzyme was stable at pH 6.0-9.0 for 24 hr and under $5^{\circ}C$. Half-life of enzyme at $35^{\circ}C$ was 40 min. Crude preparations of enzyme were inhibited by ferrous ion-chelating agent and sulfhydryl-binding agent. GSH offsets inhibitory effect of PCMB. With increasing substrate concentrations, enzyme activity gave typical Michaelis-Menten curve, Based on Hanes-Woolf plot of data, $K_{m}\;and\;V_{max$ were $3.39{\times}10^{6}\;M\;and\;1.2\;pmol/mg$ protein/min, respectively.

Characterization and N-Terminal Amino Acid Sequence Analysis of Catechol 2,3-dioxygenase Isolated from the Aniline Degrading Bacterium, Delftia sp. JK-2 (Aniline 분해세균 Delftia sp. JK-2에서 분리된 catechol 2,3-dioxygenase의 특성 및 N-말단 아미노산 서열분석)

  • 황선영;송승열;오계헌
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The aim of this work was to investigate the characterization and sequence of catechol 2,3-dioxygenase isolated from Delfia sp. JK-2, which could utilize aniline as sole carbon, nitrogen and energy source. In initial experiments, several characteristics of C2,3O separated with ammonium sulfate precipitation, DEAE-sepharose were investigated. Specific activity of C2,3O was approximately 4.72 unit/mg. C2,3O demonstrated its enzyme activity to other substrates, catechol and 4-methylcatechol. The optimum temperature of C2,3O was $$Cu^{2+}$^{\circ}C$, and the optimal pH was approximately 8. Metal ions such as $Ag^{+}$, $Hg^{+}$, and $Cu^{2+}$ showed inhibitory effect on the activity of C2,3O. Molecular weight of the enzyme was determined to approximately 35 kDa by SDS-PAGE. N-terminal amino acid sequence of C2,3O was analyzed as $^{1}MGVMRIG-HASLKVMDMDA- AVRHYENV^{26}$, and exhibited high sequence homology with that of C2,30 from Pseudomonas sp. AW-2, Comamonas sp. JS765, Comamonas testosteroni and Burkholderia sp. RPO07. PCR product was amplified with the primers derived from N-terminal amino acid sequence. In this work, we found that the amino acid sequence of Delftia sp. JK-2 showed high sequence homology of C2,3O from Pseudomonas sp. AW-2 (100%) and Comamonas sp. JS765 (97%).

Biodegradation of Mixture of Benzoate and m-Toluate with Pseudomonas sp. (Pseudomonas sp. 의한 Benzoate와 m-Toluate 혼합물의 생분해)

  • 정준영;김교창;조재민
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.352-357
    • /
    • 1998
  • Biodegradation of benzoate and m-toluate was investigated using a Pseudomonas sp. isolated in a continuous culture for 45 days with a step-wise increase of the subsrates. The optimum mixture ratio of benzoate and m-toluate was 75% and 25%, respectively. During 45-day culture, removal of benzoate and m-toluate, which was replaced 2,000 ppm on the 30th day were 94% and 79%, respectively, when COD removal rate was 80%. The enzymatic activity of catechol 1,2-dioxygenase increased and that of catechol 2,3-dioxygenase decreased as the concentration of m-toluate was increased. These results suggested that m-toluate induced enzyme activity for degradation of benzoate. The shape of isolated strain in the continuous culture was investigated with SEM and the results showed that the cell shape was more damage according to the higher concentration of aromatic hydrocarbons. Therefore, we suggested that the tolerance against aromatic hydrocarbons was related to not only enzymatic activity but also characteristic of cell membrane or cell wall.

  • PDF

Complete genome sequence of Runella sp. ABRDSP2, a new mono-aromatic compounds degrading bacterium isolated from freshwater (담수로부터 분리한 단환성 화합물 분해 미생물 Runella sp. ABRDSP2의 전장 유전체 서열)

  • Kang, Hye Kyeong;Ryu, Byung-Gon;Choi, Kyung Min;Jin, Hyun Mi
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.55-57
    • /
    • 2019
  • The Runella sp. ABRDSP2, capable of degrading mono-aromatic compounds such as toluene, was isolated from freshwater. The whole genome, consisting of a circular single chromosome and three plasmids, was composed of total 7,613,819 bp length with 44.4% G+C contents and 6,006 genes. The genome of strain ABRDSP2 contains many aromatic hydrocarbon degrading genes such as monooxygenase, ring-cleaving dioxygenase, and catechol 1,2-dioxygenase. The complete genome reveals versatile biodegradation capabilities of Runella sp. ABRDSP2.

Tryptophan Metabolite 3-Hydroxyanthranilic Acid Augments TRAIL-Induced Apoptosis in Activated T Cells (트립토판 대사체 3-hydroxyanthranilic acid의 TRAIL-유도 활성 T 세포 사멸 효과)

  • Seo, Su-Kil
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.316-321
    • /
    • 2011
  • Generation of tryptophan-derived metabolites by indoleamine 2,3-dioxygenase (IDO) is a potent immunoregulatory mechanism in T cell responses. However, the mechanism remains unclear. We showed that 3-hydroxyanthranilic acid (3-HAA), the most potent metabolite, selectively induced apoptosis in activated T cells, but not in resting T cells. This was not associated with cell cycle arrest. We found that TRAIL expression was selectively induced in activated T cells by treatment of 3-HAA. Blockade of the TRAIL: DR4/DR5 pathway significantly inhibited 3-HAA-mediated T cell death. Our data suggest that TRAIL-induced apoptosis is involved in the mechanism of 3-HAA-mediated T cell death.

Sequence and phylogenetic analysis of the phnS gene encoding 2-hydroxychromene-2-carboxylate isomerase in Sphingomonas chungbukensis DJ77 (Sphingomonas chungbukensis DJ77 균주에서 2- hydroxychromene-2-carboxylate isomerase를 암호화하는 phnS 유전자의 염기서열과 상동성 분석)

  • 엄현주;강민희;김영필;김성재;김영창
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.123-127
    • /
    • 2003
  • Sphingomonas chungbukensis DJ77 is able to metabolize phenanthrene as the sole carbon and energy source. The plasmid pUPX5 includes phnS gene encoding 2-hydroxychromene-2-carboxylate (HCCA) isomerase, which is needed for phenanthrene and naphthanene degradation. We determined the nucleotide sequence of DNA fragment of 3271 bp which included the phnS gene. The fragment included an open reading frame of 594 bp which has ATG initiation codon and TAA termination codon and GGAA ribosomal binding site. The predicted amino acid sequence of the enzyme consists of 198 amino acids. The deduced amino acid sequence of the phnS enzyme exhibited 94% identity with that of the corresponding enzyme in Sphingomonas aromaticivorans F199. The phnS gene is located downstream and in the same operon as phnQ and phnR, encoding a 2,3-dihydroxybiphenyl 1,2-dioxygenase and a ferredoxin component of biphenyl dioxygenase, respectively.