• Title/Summary/Keyword: 2,\

Search Result 605,820, Processing Time 0.222 seconds

Oxidation of trans-[FeH(NCS(Me)-S)(dppe)2]I to trans trans-[FeNCS)2(Ph2P(O)CH2CH2P(O)Ph2)2][I3](dppe=PPh2CH2CH2PPh2) (trans-[FeH(NCS(Me)-S)(dppe)2]I 화합물의 trans-[FeNCS)2(Ph2P(O)CH2CH2P(O)Ph2)2][I3]로 산화)

  • Lee, Ji Hwa;Lee, Soon W.
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.311-315
    • /
    • 2000
  • The Fe(II)-isothiocyanato complex $trans-[FeH(NCS)(dppe)_2]$ (1) eactedwith iodomethane(Mel) to give methyl isothiocyanide-Fe(n) complex, $trans-FeH(NCS(Me)-S)(dppe)_2]I(2)$. Compound 2 was oxidized to $trans-[Fe(NCS)_2(Ph_2P(O)CH_2CH_2P(O)Ph_2)_2][I_3]$ (3), which was structurally characterized by X-ray diffraction. The molecular structure of 3 showed a bent Fe-NCS group, Crystallographic data for 3: triclinic space group P1,a=11.071(2) A,b=12.054(2)A,c=12.121(1)A, $\alpha=101.02(1){\circ}C{\beta}=95.887(9){\circ}Cr=110.34(1){\circ}C$, $Z=1R(wR_2)=0.0567(0.1294)$.

  • PDF

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

Spectroscopic, Thermal and Biological Studies on Newly Synthesized Cu(II), Ni(II) and Co(II) Complexes with 3-N-2-hydroxyethylamine Benzanthrone and 3-N-2-aminoethylamine Benzanthrone (3-N-2-hydroxyethylamine benzanthrone 및 3-N-2-aminoethylamine benzanthrone에 대한 Cu(II), Ni(II) 및 Co(II) 착물의 분광학, 열 및 생물학적 연구)

  • Refat, Moamen S.;Megahed, Adel S.;El-Deen, Ibrahim M.;Grabchev, Ivo;El-Ghol, Samir
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.28-37
    • /
    • 2011
  • Spectroscopic (infrared, electronic and $1^H$-NMR), elemental analyses CHN, molar conductivity, thermogravimetric analyses (TGA/DTG) and biological studies, of both benzanthrone derivatives 3-N-2-hydroxy ethylamine benzanthrone (HEAB) and 3-N-2-amino ethylamine benzanthrone (AEAB) with Cu(II), Co(II) and Ni(II) chlorides were discussed herein. Based on the above studies, HEAB ligand was suggested to be coordinated to each metal ions via hydroxo and amino groups to form [Cu(HEAB)$(Cl)_2$].$2H_2O$, [Co(HEAB)$(Cl)_2(H_2O)_2$].$8H_2O$ and [Ni(HEAB)$(Cl)_2(H_2O)_2$].$7H_2O$ coordinated complex. On the other hand, AEAB has an octahedral coordinated feature with formulas [Cu(AEAB)$(Cl)_2(H_2O)_2$].$2H_2O$, [Co(AEAB)$(Cl)_2(H_2O)_2$].$4H_2O$ and [Ni(AEAB)$(Cl)_2(H_2O)_2$]. $6H_2O$. The molar conductance values at $25{\circ}C$ for all complexes in DMF are slightly higher than free ligands; this supported the presence of chloride ions inside the coordination sphere. Both benzanthrone ligands and their complexes have been screened against different kinds of bacteria.

Crystal Structures of Fully Dehydrated $Ca^{2+}$-Exchanged Zeolite X, $Ca_{46}-X$, and $Ca^{2+}$ and $K^+$-Exchanged Zeolite X, $Ca_{32}K_{28}-X$ ($Ca^{2+}$ 이온으로 완전히 치환된 제올라이트 X, $Ca_{46}-X$$Ca^{2+}$ 이온과 $K^+$ 이온으로 치환된 제올라이트 X, $Ca_{32}K_{28}-X$를 완전히 진공 탈수한 결정구조)

  • Jang, Se Bok;Song, Seong Hwan;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 1995
  • The crystal sructures of $X(Ca_{46}Al_{92}Si_{100}O_{384})$ and $Ca_{32}K_{28}-X(Ca_{32}K_{28}Al_{92}Si_{100}O_{384})$ dehydrated at $360^{\circ}C$ and $2{\times}10^{-6}$ Torr have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ Their structures were refined to the final error indices, R_1=0.096,\;and\;R_2=0.068$ with 166 reflections, and R_1=0.078\;and\;R_2=0.056$ with 130 reflections, respectively, for which I > $3\sigma(I).$ In dehydrated $Ca_{48}-X,\;Ca^{2+}$ ions are located at two different sites opf high occupancies. Sixteen $Ca^{2+}$ ions are located at site I, the centers of the double six rings $(Ca(1)-O(3)=2.51(2)\AA$ and thirty $Ca^{2+}$ ions are located at site II, the six-membered ring faces of sodalite units in the supercage. Latter $Ca^{2+}$ ions are recessed $0.44\AA$ into the supercage from the three O(2) oxygen plane (Ca(2)-O(2)= $2.24(2)\AA$ and $O(2)-Ca(2)-O(2)=119(l)^{\circ}).$ In the structure of $Ca_{32}K_{28}-X$, all $Ca^{2+}$ ions and $K^+$ ions are located at the four different crystallographic sites: 16 $Ca^{2+}$ ions are located in the centers of the double six rings, another sixteen $Ca^{2+}$ ions and sixteen $K^+$ ions are located at the site II in the supercage. These $Ca^{2+}$ ions adn $K^+$ ions are recessed $0.56\AA$ and $1.54\AA$, respectively, into the supercage from their three O(2) oxygen planes $(Ca(2)-O(2)=2.29(2)\AA$, $O(2)-Ca(2)-O(2)=119(1)^{\circ}$, $K(1)-O(2)=2.59(2)\AA$, and $O(2)-K(1)-O(2)=99.2(8)^{\circ}).$ Twelve $K^+$ ions lie at the site III, twofold axis of edge of the four-membered ring ladders inside the supercage $(K(2)-O(4)=3.11(6)\AA$ and $O(1)-K(2)-O(1)=128(2)^{\circ}).$

  • PDF

$Hg^{2+}$-promoted Aquation and Chelation of cis-[Co(en)$_2$(L)Cl]$^{2+}$ (L = Amines) Complexes ($Hg^{2+}$에 의한 cis-[Co(en)$_2$(L)Cl]$^{2+}$ (L = 아민류) 착물의 아쿠아화 및 킬레이트화 반응)

  • Chang Eon Oh;Doo Cheon Yoon;Bok Jo Kim;Myung Ki Doh
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.565-578
    • /
    • 1992
  • It has been suggested that Hg$^{2+}$-promoted reaction of a series of cis-[Co(en)$_2$(L)Cl]$^{2+}$ (en = 1,2-diaminoethane) with L = NH$_3$, NH$_2$CH$_3$, glyOC$_2$H$_5$, glyOCH$_3$, dl-alaOC$_2$H$_5$, NH$_2$CH$_2$CONH$_2$, and NH$_2$CH$_2$CN proceeds by dissociative interchange(I$_d$) mechanism from kinetic data, circular dichroism spectra, analyses of products, and the values of m(Grunwald-Winstein plot) using Y (solvent ionizing power) in aqueous solution and in mixed aqueous-organic solvent. It has been found that chloride replacement by water (aquation) for the series with L = NH$_3$ and NH$_2$CH$_3$ and chelation of ligand L to Co(Ⅲ) for the series with L = glyOC$_2$H$_5$, glyOCH$_3$, dl-alaOC$_2$H$_5$, NH$_2$CH$_2$CONH$_2$, and NH$_2$CH$_2$CN occurs, respectively. The rate constants on Hg$^{2+}$-induced reaction of the series except cis-[Co(en)$_2$(NH$_2$CH$_2$CN)Cl]$^{2+}$ were increased with increasing the contents of ethanol in mixed water-ethanol solvents. In mixed water-30${\%}$ organic solvents, the rate constants of the series except cis-[Co(en)$_2$(NH$_2$CH$_2$CN)Cl]$^{2+}$ have also been measured in the order 30${\%}$ 2-propanol-water > 30${\%}$ ethanol-water > water. However, the rate constants of cis-[Co(en)$_2$(NH$_2$CH$_2$CN)Cl]$^{2+}$ were reversed. The rate constants of the series with L= NH$_3$ and NH$_2$CH$_3$ were related to ligand field parameter (${\Delta}$), but those of the series with L = glyOC$_2$H$_5$, glyOCH$_3$, dl-alaOC$_2$H$_5$, NH$_2$CH$_2$CONH$_2$, NH$_2$CH$_2$CN were not. The reaction between the series and Hg2+ in aqueous media containing NO$_3^-$ has been investigated. The results for the reaction do not alter the mechanism, but the rate only was altered.

  • PDF

A cytotaxonomic study of Vicia L. (Fabaceae) in Korea (한국산 나비나물속(콩과)의 세포분류학적 연구)

  • Nam, Bo Mi;Park, Myung Soon;Oh, Byoung Un;Chung, Gyu Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.4
    • /
    • pp.307-315
    • /
    • 2012
  • Somatic chromosome numbers for 10 taxa and karyotypes analysis for 6 taxa of Korean Vicia were investigated. Somatic chromosome numbers of treated taxa were 2n = 12, 14 or 24 and therefore they proved to be diploid or tetraploid with basic chromosome numbers of x = 6 or 7. The chromosome number of V. hirticalycina (2n = 2x = 12) was reported for the first time in this study. The chromosome numbers of nine taxa were the same as in previous studies; V. angustifolia (2n = 2x = 12), V. cracca (2n = 4x = 24), V. hirsuta (2n = 2x = 14), V. tetrasperma (2n = 2x = 14 + 2B), V. amurensis (2n = 2x = 12), V. chosenensis (2n = 2x = 12, 12 + 2B), V. unijuga (2n = 4x = 24), V. unijuga f. minor (2n = 4x = 24), V. venosa var. cuspidata (2n = 4x = 24). The karyotypes of V. cracca, V. amurensis, V. hirticalycina, V. unijuga, V. unijuga f. minor, V. venosa var. cuspidata were observed as 2 m + 8 sm + 2 st, 2 m + 2 sm + 2 st, 3 m + 1 sm + 2 st, 4 m + 6 sm + 2 st, 4 m + 6 sm + 2 st, 4 m + 8 sm, respectively.

A taxonomic study of Korean Artemisia L. using somatic chromosome numbers (한국산 쑥속의 체세포 염색체수에 의한 분류학적 연구)

  • Park, Myung Soon;Jang, Jin;Chung, Gyu Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.4
    • /
    • pp.247-253
    • /
    • 2009
  • Somatic chromosome numbers for 20 taxa of Korean Artemisia L. were investigated for the purpose of classification. Somatic chromosome numbers of treated taxa were 2n = 16, 18, 34, 36, 50, 52, 54, and therefore their basic chromosome numbers were x = 8, 9, 10, 13, 17. The chromosome number of A. japonica var. angustissima is being reported for the first time in this study. The chromosome numbers of 13 taxa were the same as in previous reports; A. capillaris (2n = 18), A. japonica var. hallaisanensis (2n = 36), A. japonica subsp. littoricola (2n = 36), A. annua (2n = 18), A. carvifolia (2n = 18), A. fukudo (2n = 16), A. keiskeana (2n = 18), A. stolonifera (2n = 36), A. sylvatica(2n = 16), A. selengensis (2n = 36), A. montana (2n = 52), A. lancea (2n = 16), A. sieversiana (2n = 18); however, the chromosome numbers of 6 taxa were different; A. japonica var. japonica (2n = 18, 36 vs 2n = 36), A. sacrorum (2n = 18, 54 vs 2n = 54), A. rubripes (2n = 16, 34 vs 2n = 16), A. indica (2n = 34, 36 vs 2n = 34), A. codonocephala (2n = 18, 50, 54 vs 2n = 50), A. argyi (2n = 34, 36, 50 vs 2n =34). The somatic chromosome numbers of Korean Artemisia are thought to be good characteristics for classifying some taxa such as A. japonica var. japonica, A. sacrorum, A. codonocephala, A. argyi, A. montana, A. sylvatica.

Development of Pd/TiO2 Catalysts with La2O3 Addition and Study on the Performance Improvement of H2 Oxidation at Room Temperature (La2O3가 첨가된 Pd/TiO2 촉매의 개발 및 H2 상온산화 반응에서의 성능 향상 연구)

  • Lee, Dong Yoon;Kim, Sung Chul;Lee, Sang Moon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.674-678
    • /
    • 2020
  • In this study, a Pd/TiO2 catalyst which oxidized H2 at room temperature without an additional energy source was prepared. And a specific surface area of TiO2 as a support was not proportional to H2 oxidation reaction performance of Pd/TiO2 catalyst. In addition La2O3 was added to Pd/TiO2 catalyst in order to evaluate the performance effect due to the change of catalysts physical properties. A Pd/La2O3-TiO2 was prepared by adding different amounts of La2O3 to TiO2 and CO chemisorption analysis was performed. Compared to the conversion rate (14% at 0.5% H2) of the Pd/TiO2(G) catalyst, the Pd/La2O3-TiO2 catalyst showed 74% which was improved by more than five times. It was found that the larger the metal dispersion of Pd as an active metal is, the more favorable to H2 oxidation reaction is. However, when the added La2O3 amount exceeded 10%, the catalyst performance decreased again. Finally, it was concluded that the physical properties of the Pd/La2O3-TiO2 catalyst have a dominant influence on the catalytic activity until 0.3~0.5% of injected H2 concentrations and the catalyst reaction rate was controlled by substance transfer from 1% or more concentrations of H2.

Properties of the Powders of the System Al2O3-ZrO2-Y2O3 Prepared by Precipitation Method (침전법으로 제조한 Al2O3-ZrO2-Y2O3계 분말의 특성)

  • 김준태;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • The properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method were investigated. Al2(SO4)3$.$18H2O3, ZrOCl2$.$8H2O and YCl3$.$6H2O were used as starting materials. Amorphous aluminum hydrate prepared by precipitation method was completely transformed to alpha Al2O3 as a result of calcining at 1100$^{\circ}C$ for 1 hr and gamma, delta and theta phases appeared as transition phases. In ZrO2-Y2O3 system prepared by co-precipitation method, the crystallization temperature of ZrO2 was increase with Y2O3 contents. The coupled crystallization occured in coprecipitated Al2O3-ZrO2-Y2O3 system, therefore the formation temperature of alpha Al2O3 and ZrO2-Y2O3 system. In this ternary system, the powder morphology showed a particular shape which was composed of large Al2O3 grains having small spherical ZrO2 particles within large Al2O3 grain and relatively large ZrO2 particles along the grian boundaries.

  • PDF

JACOBI'S THETA FUNCTIONS AND THE NUMBER OF REPRESENTATIONS OF A POSITIVE INTEGER AS A SUM OF FOUR TRIANGULAR NUMBERS

  • Kim, Aeran
    • Honam Mathematical Journal
    • /
    • v.38 no.4
    • /
    • pp.753-782
    • /
    • 2016
  • In this paper we deduce the number of representations of a positive integer n by each of the six triangular forms as $${\frac{1}{2}}x_1(x_1+1)+{\frac{3}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+{\frac{1}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\x_1(x_1+1)+x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\x_1(x_1+1)+{\frac{3}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+3x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+3x_3(x_3+1)+3x_4(x_4+1).$$