• Title/Summary/Keyword: 1RM

Search Result 496, Processing Time 0.029 seconds

In vitro Micropropagation and Root Induction of Pear Genetic Resources

  • Jae-young Song;Jinjoo Bae;Woohyung Lee;Jung-ro Lee;Munsup Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.63-63
    • /
    • 2022
  • Pear (Pyrus spp.) is a typical fruit and grown in the temperate climate regions throughout the world. Development of appropriate methods for in vitro propagation and root induction are important to increase the production rate and plant quality rapidly. This study was conducted to find the most appropriate media conditions for in vitro propagation and rooting of three pear cultivars, 'Barttlett', 'BaeYun No.3' and 'Oharabeni'. In vitro propagation was induced on Murashige and Skoog medium (MS) with 2.0 mg/L N6-benzyladenine (BA) and 0.2 mg/L indole-3-butyric acid (IBA) medium. For root induction of these cultivars, the shoot explants of the propagated plants were cultured on two different media containing 1/2 MS medium containing 0.2 mg/L IBA with 15 g/L Sucrose (Rooting Medium 1, RM1) and 1/4 Linsmaier and Skoog medium (LS) medium containing 1 mg/L IBA and 1 mg/L NAA hormone with 7.5 g/L glucose (Rooting Medium, RM2) and after 2 weeks, the plants on the RM2 medium are transferred on RM1 medium (RM2 condition). After nearly seven weeks, percentage of rooting formation were 22.2% in RM1 and 30% in RM2 conditions for Barttlett and 70% in RM1 and 60% in RM2 conditions for Oharabeni cultivars. No differences in these cultivars were observed between RM1 and RM2 conditions. However, BaeYun No.3 cultivar was observed 0% in RM1 and 72.7% in RM2 conditions. This study will help to propagation and root induction of in vitro plants for various pear cultivars.

  • PDF

The Effects of Changes in Upper Limb Loads on the Activity of the Gluteus Medius Muscle in Single Limb Support

  • Park, Hyun Hee;Lee, Byeong Hun;Lee, Jeong Hun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.4 no.1
    • /
    • pp.494-498
    • /
    • 2013
  • The purpose of this study is to find out the activity of gluteus medius muscle by the changes of load given to the upper limbs in single support phase. This study was twenty healthy men from A College. The left gluteus medius muscle was measured using SEMG(surface Electromyogram). Only the left foot was supported, and for the right foot, the right upper limbs were abducted while hip joint and the knee joint were bent at a $90^{\circ}$ angle. The study was made by giving weight using dumbbells, depending on the RM of the subject(0RM, 1RM, 3RM, 5RM, 7RM). Gluteus medius muscle showed a large activity for those given weight to the upper limbs(1RM, 3RM, 5RM, 7RM) than that without weight(0RM). There was a significant difference in the activity of gluteus medius muscle between each RM. Gluteus medius muscle is high active when weight is given to the upper limbs in single support phase.

Electromyographic Analysis of Lower Extremity Lateral Stabilizer During Upper Extremity Elevation Movements

  • Jung, Ho-Bal
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.185-191
    • /
    • 2010
  • Background: This study investigated effective posture for gluteus medius rehabilitation training and effects of isometric muscle activity by electrophysiology through EMG while performing dynamic isotonic behavior of weight placed differently on upper limbs. Method: 16 healthy male subjects 20 to 29 years of age volunteered for the study. Lateral stabilizer right gluteus medius activity was assessed using EMG while the right lower extremity maintains single limb support, and the left upper extremity elevation movement maintains 5 seconds without load, 1RM to 1 repetition, 5RM to 5 times, 10RM to 10 times, 5RM and 10RM maintain 5sec. Results: Comparison of the mean value of EMG data showed a statistically more significant difference in upper extremity elevation movement on opposite upper extremity added weight than one that was not added on a single limb weight bearing posture(p>.05). Weight supported side gluteus medius activity for 1RM, 5RM, 10RM weight difference and movement repetition did not differ(p>.05). Comparison in maximum value showed statistically significant differences in not adding weight on upper limb elevation exercise and 1RM, 5RM, 10RM repeated behavior. Elevation behavior and repetition appeared over 70% of MVIC. Conclusion: Unilateral weight bearing stance added weight in the opposite upper limb elevation movement was an indirect exercise to effectively stimulate gluteus medius activity. Applying various added weight will have effective exercise on the early stages of rehabilitation because activity gluteus medius did not differ through added weight.

  • PDF

Study on the Smart 1RM System Development and Effect Verification for Health Improvement and Management of National Healthcare (국민 건강관리 및 체력증진을 위한 스마트 1RM 시스템 개발 및 효과 검증에 관한 연구)

  • Woo, Kyung-Min;Shin, Mi-Yeon;Yu, Chang-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • In this study, we developed a smart 1RM system for national health management and physical fitness, which enables quantitative 1RM measurement in various types of exercise using digital pulley technology, and to test the effect on training by using it. We developed the smart 1RM system, which is composed of portable muscle strength measuring device, Bluetooth communication based mobile phone data transmission and circuit diagram, and height adjustable system body. We recruited the 30 participants with 20th aged and divided into training and non-performing groups with 15 participants randomly. The participants performed 5 sets of elbow, lumbar, knee extension / flexion 10 times using smart 1RM system and the experimental period was 3 days a week for a total of 8 weeks. The experimental results showed that the maximum strength of the elbow, lumbar, and knee joints was significantly improved before and after maximal muscle strength training in the training group. Oxygen intakes during 1RM exercise mode showed 10.91% than endurance. To verify the validity of the smart 1RM maximal strength data, the reliability was 0.895 (* p <0.00). This study can be applied to the early rehabilitation treatment of the elderly and rehabilitation patients more quantitatively using the national health care.

Enhancement of Interfacial Adhesion of Epoxy/Red Mud Nanocomposites Produced by Acidic Surface Treatment on Red Mud (Red Mud의 산처리에 의한 에폭시/Red Mud 나노복합재료의 계면 결합력 향상)

  • Park, Soo-Jin;Seo, Dong-Il;Lee, Jae-Rock;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.587-593
    • /
    • 2001
  • In this work, red mud (RM) was chemically modified by 0.1, 1, and 5 M H3PO4 solution to prepare epoxy/RM nanocomposites. The effect of chemical treatment on pH, acid-base values, specific surface area, and porosity of RM surface was analyzed. To estimate the mechanical interfacial properties of epoxy/RM nanocomposites, the critical stress intensity factor (K$_{IC}$) was measured. From the experimental results, it was clearly revealed that the porosity, specific surface area, and acid values of RM surface were developed as the increase of the treatment concentration due to the increase of acidic functional group, including hydroxyl group on RM surface. The mechanical interfacial properties of epoxy/treated-RM nanocomposites were higher than those of epoxy/RM as-received due to an improvement of interfacial bonding between basic matrix and RM surface.

  • PDF

The Effect of Exercise Intensity on Muscle Activity and Kinematic Variables of the Lower Extremity during Squat

  • Jung, Jae-Hu;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.197-203
    • /
    • 2017
  • Objective: The purpose of this study was to determine how exercise intensity affects muscle activity and kinematic variables during squat. Method: Fifteen trainers with >5 years of experience were recruited. For the electromyography (EMG) measurements, four surface electrodes were attached to both sides of the lower extremity to monitor the rectus femoris (RF) and biceps femoris. Three digital camcorders were used to obtain three-dimensional kinematics of the body. Each subject performed a squat in different conditions (40% one-repetition maximum [40%1RM], 60%1RM, and 80%1RM). For each trial being analyzed, three critical instants and two phases were identified from the video recording. For each dependent variable, one-way analysis of variance with repeated measures was used to determine whether there were significant differences among the three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: The results showed that the average integrated EMG values of the RF were significantly greater in 80%1RM than in 40%1RM during the extension phase. The temporal parameter was significantly longer in 80%1RM than in 40%1RM and 60%1RM during the extension phase. The joint angle of the knee was significantly greater in 80%1RM than in 40%1RM at flexion. The range of motion of the knee was significantly less in 80%1RM than in 40%1RM and 60%1RM during the flexion phase and the extension phase. The angular velocity was significantly less in 80%1RM than in 40%1RM and 60%1RM during the extension phase. Conclusion: Generally, the increase of muscle strength decreases the pace of motion based on the relation between the strength and speed of muscle. In this study, we also found that the increase of exercise intensity may contribute to the increase of the muscle activity of the RF and the running time in the extension phase during squat motion. We observed that increased exercise intensity may hinder the regulation of the range of motion and joint angle. It is suitable to perform consistent movements while controlling the proper range of motion to maximize the benefit of resistance training.

Faraday Rotation Measure in the Large Scale Structure III

  • Akahori, Takuya;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • The nature and origin of the intergalactic magnetic field (IGMF) are an outstanding problem of cosmology, yet they are not well understood. Measuring Faraday rotation (RM) is one of a few promising methods to explore the IGMF. We have theoretically investigated RM using a model of the IGMF based on a MHD turbulence dynamo (Ryu et al. 2008; Cho et al. 2009). In the previous KAS meeting, we reported the results for the present-day local universe; for instance, the probability distribution function (PDF) of ${\mid}RM{\mid}$ follows the lognormal distribution, the root mean square (rms) value for filaments is ~1 rad m^{-2}, and the power spectrum peaks at ~1 h^{-1} Mpc scale. In this talk, we extend our study of RM; by stacking simulation data up to redshift z=5 and taking account of the redshift distribution of radio sources, we have reproduced an observable view of RM through filaments against background radio sources. Our findings are as follows. The inducement of RM is a random walk process, so that the rms of RM increases with increasing path length. The rms value of RM for filaments reaches several rad m^{-2}. The PDF still follows the lognormal distribution, and the power spectrum of RM peaks at less than degree scale. Our predictions of RM could be tested, for instance, with LOFAR, ASKAP, MEERKAT, and SKA.

  • PDF

Role of the Neutrophil-to-Lymphocyte Ratio at the Time of Arrival at the Emergency Room as a Predictor of Rhabdomyolysis in Severe Trauma Patients

  • Bae, Jin Chul;Sun, Kyung Hoon;Park, Yong Jin
    • Journal of Trauma and Injury
    • /
    • v.33 no.2
    • /
    • pp.96-103
    • /
    • 2020
  • Purpose: In patients with trauma, rhabdomyolysis (RM) can lead to fatal complications resulting from muscle damage. Thus, RM must be immediately diagnosed and treated to prevent complications. Creatine kinase (CK) is the most sensitive marker for diagnosing RM. However, relying on CK tests may result in delayed treatment, as it takes approximately 1 hour to obtain CK blood test results. Hence, this study investigated whether the neutrophil-to-lymphocyte ratio (NLR) could predict RM at an earlier time point in patients with trauma, since NLR results can be obtained within 10 minutes. Methods: This retrospective study included 130 patients with severe trauma who were admitted to the emergency room of a tertiary institution between January 2017 and April 2020. RM was defined as a CK level ≥1,000 U/L at the time of arrival. Patients with severe trauma were categorized into non-RM and RM groups, and their characteristics and blood test results were analyzed. Statistical analysis was performed using SPSS version 26.0 for Windows. Results: Of the 130 patients with severe trauma, 50 presented with RM. In the multivariate analysis, the NLR (odds ratio [OR], 1.252; 95% confidence interval [CI], 1.130-1.386), pH level (OR, 0.006; 95% CI, 0.000-0.198), presence of acute kidney injury (OR, 3.009; 95% CI, 1.140-7.941), and extremity Abbreviated Injury Scale score (OR, 1.819; 95% CI, 1.111-2.980) significantly differed between the non-RM and RM groups. A receiver operating characteristic analysis revealed that a cut-off NLR value of 3.64 was the best for predicting RM. Conclusions: In patients with trauma, the NLR at the time of arrival at the hospital is a useful biochemical marker for predicting RM.

Efficient Exercise Volume Analysis through Number of Repetitions and EMG Response of Agonist Muscle During the Bench Press

  • Kim, Ki Hong
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2021
  • Background and Objectives In designing a resistance exercise program, intensity, rest, and exercise volume are important. Many studies have been conducted to find the most suitable resistance exercise program incorporating the above, and in particular, many prior studies have been conducted on intensity. This study attempted to determine the effective volume of exercise by analyzing the number of repetitions performed at intensities of 65% one-repetition maximum (1RM) and 75% 1RM during the bench press exercise, and the electromyography (EMG) response of the agonist muscle. Materials and Methods Eight males in their 20s were selected as study subjects and they performed five sets of bench presses at two levels of intensity (65% 1RM, 75% 1RM). The following results were obtained by measuring the number of repetitions and the EMG response according to the exercise intensity and sets during the workout. Results First, the number of repetitions showed a sharp drop from the first set to the third set at 65% 1RM intensity and showed no change in the fourth and fifth sets. At 75% 1RM intensity, the intensity of hypertrophy showed a gradual decrease from the first set to the fifth set. Second, at 75% 1RM exercise intensity, the pectoralis major, anterior deltoid and triceps brachii showed high muscle activity, and the activity of the anterior deltoid continued to increase from the first set to the fourth set at 65% 1RM intensity, and from the first set to the fifth set at 75% 1RM. Conclusion It was found that during the bench press exercise, three minutes of rest at 75% 1RM intensity, five sets of five sets, one minute rest at 65% 1RM intensity, and three sets of the exercise were effective.

Faraday Rotation Measurein the Large-Scale Structure II

  • Akahori, Takuya;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.83.1-83.1
    • /
    • 2010
  • In the last meeting of KAS, we reported the first statistical study of Faraday rotation measure (RM) in the large-scale structure of the universe using the data of cosmological structure formation simulations. With a turbulence dynamo model for the intergalactic magnetic field (IGMF), we predicted that the root mean square of RM through filaments is \sim 1 rad/m^2. Future radio observatories such as the Square Kilometer Array (SKA) could detect this signal level. However, it is known that the typical foreground galactic RM is a few tens and less than ten rad/m^2 in the low and high galactic latitudes, respectively. So the RM in the large-scale structure could be detected only after the foreground galactic RM is removed. In this talk, we show how we remove the foreground galactic RM and what we obtain from the masked data, by using some noise models and masking techniques. Our results can be used to simulate future RM observations by SKA, and eventually to constrain the origin and evolution of the IGMF in the large-scale structure.

  • PDF