• Title/Summary/Keyword: 1M ammonium acetate

Search Result 73, Processing Time 0.025 seconds

Study on the micellization of cetyltrimethyl ammonium bromide in 4-biphenyl acetate solution (4-biphenyl acetate 수용액에서 Cetyltrimethyl Ammonium Bromide의 미셀화에 관한 연구)

  • Oh, Jung Hee
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-116
    • /
    • 1995
  • The critical micelle concentration(CMC) of CTAB was determined with changes in absorbance at 202nm band of 4-biphenyl acetate($BPA^-$). With $BPA^-$ as a probe, the effect of temperature on CMC of CTAB has been observed between $30^{\circ}C{\sim}70^{\circ}C$. In this range of temperature the values of CMC are $1.18{\times}10^{-4}{\sim}2.02{\times}10^{-4}M$. The free energy(${\Delta}G^{\circ}m$) and enthalpy(${\Delta}H^{\circ}m$)for the micellization of CTAB was negative and the entropy(${\Delta}S^{\circ}m$) was a large positive value. The micellization of CTAB is considered as a spontaneous process and to involve a phase transition. The orientational binding of 4-biphenyl acetate anion to the CTAB micelle interface has been studied with $300MHz\;H^1-NMR$ data. The change in chemical shift of proton in CTAB as well as those of the protons in $BPA^-$ have been investigated by increasing the mole fraction of the anion in the mixed solutions. The changes in chemical shift with increasing mole fraction of anion($BPA^-$) indicate the formation of mixed micelle between CTAB and $BPA^-$. The changes in chemical shifts of methylene protons in CTAB, demonstrate the penetration of $BPA^-$ into the palisade layer of the CTAB micelle.

  • PDF

Cation Exchange Capacity in Korean Soils Determined by the Copper(II) Acetate Spectrophotometry Method

  • Park, Won-Pyo;Chang, Kong-Man;Koo, Bon-Jun;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.653-662
    • /
    • 2017
  • Copper(II) acetate spectrophotometry method (CASM) was used for the rapid and convenient determination of cation exchange capacity (CEC) in soils. This method is composed of a single-step exchange reaction that adsorbs copper and is measured through spectrophotometry. The CEC of 16 Korean soils were measured using 1M ammonium acetate method (AAM) and the CASM. The CEC values determined by CASM and AAM were not significantly different, and were highly correlated ($r=0.966^{**}$). Due to the convenience, cost effectiveness, and time saving analysis of CASM, this method is recommended for most soil laboratories to measure CEC in Korean soils. However, CASM may not be applicable for soils that have a much higher CEC (greater than $20cmol_c\;kg^{-1}$).

Ammonium Acetate Supplement Strategy for Enhancement of Chaetominine Production in Liquid Culture of Marine-Derived Aspergillus fumigatus CY018

  • Liu, Chang-Qing;Wei, Xing-Chen;An, Fa-Liang;Lu, Yan-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.587-595
    • /
    • 2019
  • Pharmacological research on (CHA), a marine-derived quinazolinone alkaloid with significant cytotoxic activity, is restricted by low yields and is a problem that needs to be settled urgently. In this work, the selection of additional nitrogen sources and the optimization of additional concentrations and longer fermentation times using ammonium acetate, were investigated. CHA production was optimized to 62.1 mg/l with the addition of 50 mM ammonium acetate at 120 h of the fermentation in the shaker flask. This feeding strategy significantly increased 3-deoxy-arabino-heptulosonate-7-phosphate synthase activity and transcript levels of critical genes (laeA, dahp, and trpC) in the shikimate pathway compared with the non-treatment group. In addition, the selection of the feeding rate (0.01 and $0.03g/l{\cdot}h$) was investigated in a 5-L bioreactor. As a result, CHA production was increased by 57.9 mg/l with a $0.01g/l{\cdot}h$ ammonium acetate feeding rate. This work shows that the strategy of ammonium acetate supplementation had an effective role in improving CHA production by Aspergillus fumigatus CY018. It also shows that this strategy could serve as an important example of large-scale fermentation of a marine fungus in submerged culture.

Synthesis of Some new 4-Substituted Antipyrines as Potential Antipyretic Analgesics

  • Hammouda, M.
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.1-4
    • /
    • 1992
  • 4-Acetylantipyrine 1 underwent condensation with 4-formyl-antipyrine 2 to give 3. Condensation of either 3 with 1 or 1 with 2 in a molar ratio of (2 :1) afforded 4. Cyclization of 4 in the presence of PPA and ammonium acetate or 4-aminoantipyrine in the presence of glacial acetic acid gave 5-6 respectively. Claisen condensation of 1 with ethyl acetate and diethyl oxalate afforded compounds 8-10. The reaction of 1 and 2 with indole in ethanol/conc. hyddrochloric acid was also investigated.

  • PDF

Composition of a New Medium for Mycelial Growth of Hericium erinaceus (노루궁뎅이버섯(Hericium erinaceus)의 새로운 균사배양기의 조성)

  • Ko, Han-Gyu;Kim, Dong-Myong;Park, Won-Mok
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.369-376
    • /
    • 1997
  • These researches were carried out for improvement of medium for mycelial growth of Hericium erinaceus isolate KU-1. It grew well at pH 4 and $25^{\circ}C$. Glucose and sucrose were favorable carbon sources for mycelial growth. As nitrogen sources, ammonium acetate and arginine enhanced mycelial growth. Optimum C/N ratio was 200. Based On the results, the following recipe is suggested for synthetic medium for the mycelial growth: glucose 18.02 g, arginine 2.613 g, ammonium acetate 2.313 g, $CaCl_2\;0.33\;g$, $KH_2PO_4\;8.5\;g$, $MgSO_4{\cdot}7H_2O\;2.0\;g$, $FeSO_4{\cdot}7H_2O\;0.02\;g$, $ZnSO_4{cdot}7H_2O\;0.02\;g$, $MnSO_4{\cdot}7H_2O\;0.02\;g$, water 1 liter. This medium was superior for the mycelial growth to other conventional media such as Yeast malt extract agar (YMA), Park medium, Potato dextrose agar (PDA), Malt extract agar, Czapek-dox agar, Macaya-lizano medium and Yeast extract agar. This new synthetic medium is designated as Ko medium.

  • PDF

Simple Purification of Bromelain from Pineapple

  • Ko, Bo-Sung;Hwang, Yong-Il;Lee, Seung-Cheol
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.106-110
    • /
    • 1996
  • Bromelain(EC 3.4.22.4), the collective name for the proteolytic enzymes found in tissues of the plant family Bromeliaceae(pineapple), has been used as a tenderizing agent in food processing, and as an antiinflammatory agent in pharmaceuticals. In this paper, we describe the simple purification method of bromelain using Korean pineapple fruit. After removing contaminants at 30% saturation of ammonium sulfate, the supernatant obtained was treated again with ammonium sulfate to 80% saturation. Wit the above salt fractionation, partially purified bromelain could be obtained. To get highly purified bromelain, the previous 30% to 80% ammonium sulfate treated precipitate was dialyzed against 25mM sodium acetate buffer(pH 5.0) followed by passing through a CM- cellulose cation exchange column. Fruit bromelain was eluted as a major peak at 0.5~0.8M NaCI gradient. The present method is simpler with high wield than the traditional purification method-acetone treatment and several consecutive chromatographic processes.

  • PDF

Effect of ammonium on the current generation in the microbial fuel cell (암모니아성 질소가 미생물연료전지에서 전류 발생에 미치는 영향)

  • Jang, Jae Kyung;Choi, Jung Eun;Ryou, Young Sun;Lee, Sung Hyung;Kim, Jong Goo;Kang, Youn Koo;Kim, Young Hwa;Lee, Hyung Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.219.1-219.1
    • /
    • 2011
  • These studies carried out to know the effect of ammonium on the current generation in the microbial fuel cells (MFCs). MFCs used in the study were enriched with anaerobic digestion sludge and operated for 3 years using artificial wastewater (AWW). When the current was stably generated, ammonium ion with $27.0{\pm}0.0$, $51.5{\pm}0.0$, $103.5{\pm}0.0mg/L$ with acetate fed into the anode compartment. The current values under condition included ammonium were changed from its initial $6.30{\pm}0.06$ to $6.28{\pm}0.36$, $5.95{\pm}0.61$, $5.64{\pm}0.38mA$, respectively. The current value was slightly decreased to $5.64{\pm}0.38mA$ compared to $6.30{\pm}0.06mA$ generated from MFC without ammonium ion in the AWW. But After 3days operating under ammonium concentration with $103.5{\pm}0.0mg/L$, the current was unstably generated when artificial wastewater without ammonium was fed again. MFC enriched with AWW without ammonium ion was inhibited by high concentration of ammonium. At this time, the ammonium was removed 5.27~16.41 mg per day under all conditions.

  • PDF

Sturdy of analysis of Xanthan gum as watersoluble-polymer in cosmetics (화장품 중 수용성 고분자인 Xanthan gum 분석연구)

  • Lee, Yong-Hwa;Yang, Jae-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.664-671
    • /
    • 2013
  • Determination of xanthan gum as watersoluble-polymer in commercial cosmetic samples was carried out by High Perfomance Liquid Chromatography(HPLC). An $C_{18}$ reversed-phase column and the selected ELSD detector was applied. The 25mM ammonium acetate/acetonitrile was used for the mobile phase of gradient conditions. The analysis results of HPLC showed good linearity with correlation coefficient of $r^2=0.9993$ in the rage of $50.3{\sim}604.1{\mu}g/ml$ and detection limit of $12.0{\mu}g/ml$.

Simultaneous Determination of Tar Color Additives in Cold Syrups by Ion Pair-high Performance Liquid Chromatography (이온쌍-고성능 액체크로마토그래피에 의한 감기약 시럽에서 타르색소 첨가물의 동시분석)

  • Jin, Jing-Yu;Huang, Hu;Lee, Beom-Gyu;Lee, Won-Jae
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.459-465
    • /
    • 2010
  • A simple and efficient analytical method for the simultaneous determination of seven tar color additives was developed using ion pair high performance liquid chromatography. The conditions for HPLC analysis were as follows: column, ${\mu}$-Bondapak C18 (10 ${\mu}m$, 300 ${\times}$ 3.9 mm i.d.); gradient mobile phase, 0.025 mol/L ammonium acetate (containing 0.01 mol/L tetrabutylammonium bromide)-acetonitrile-methanol (65:25:10) as a mobile for fraction A and 0.025 mol/L ammonium acetate (containing 0.01 mol/L tetrabutylammonium bromide)-acetonitrilemethanol (40:50:10) as a mobile for fraction B; flow rate, 1.0 mL/ min; detection wavelength, 254/520/620 nm. We could attain to the detection limits as 0.01~0.05 ${\mu}$g/mL (254 nm) and 0.005~0.01 ${\mu}$g/mL (520 nm) for six red tar color additives, and 0.05 ${\mu}$g/mL (254 nm) and 0.002 ${\mu}$g/mL (620 nm) for Fast green FCF. This analytical method was applicable to determine the tar color additives contained in several commercial cold syrups.

HPLC Method for the Determination of Nicorandil in Human Plasma

  • Park, Sun-Hee;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.168-172
    • /
    • 2008
  • The present study is to determine of sensitive nicorandil analysis method using HPLC and measure the pharmacokinetics parameters (bioavailability, $C_{max}$, $T_{max}$, Ke, $T_{1/2}$) of nicorandil (5 mg, Tab; Choongwae Pharma Corporation). Plasma (500 ul) was mixed with furosemide (internal standard, 500 ug/ml). Detection wavelength was 256 nm. The mixture of 0.01 M ammonium acetate and acetonitrile 80:20 (v/v) was used mobile phase. The HPLC separation was accomplished on ODC reverse HPLC column. The nicorandil was analyzed by a HPLC system, which consists of CAPCELL PAK C18 column (5 ${\mu}$m, 4.6 × 150 mm) and a chromatography data analysis S/W, using a isocratic mobile phase (mixture of 0.01 M ammonium acetate and acetonitrile 80:20 ) at 1.0 ml/min. Its sensitivity, selectivity, accuracy and precision must be adequate for the bioavailabilty study of nicorandil, and the linearity ($r^2$ ≥ 0.9994) of nicorandil was also proved in the range of 0.05 ug/ml . 3 ug/ml. The pharmacokinetic parameters of nicorandil (5 mg) tablets were measured as the follow. AUC: 0.19 ug/ml·hr, $C_{max}$: 0.14 ug/ml, $t_{max}$: 0.58 hr, Ke: 0.11 hr., $t_{1/2\beta}$: 6.76 hrs. This method is simple and sensitive HPLC method using UV detector for determination of nicorandil in human plasma.