• Title/Summary/Keyword: 1Alpha-hydroxylase

Search Result 67, Processing Time 0.029 seconds

A case of 17 alpha-hydroxylase deficiency

  • Kim, Sung Mee;Rhee, Jeong Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.72-76
    • /
    • 2015
  • $17{\alpha}$-hydroxylase and 17,20-lyase are enzymes encoded by the CYP17A1 gene and are required for the synthesis of sex steroids and cortisol. In $17{\alpha}$-hydroxylase deficiency, there are low blood levels of estrogens, androgens, and cortisol, and resultant compensatory increases in adrenocorticotrophic hormone that stimulate the production of 11-deoxycorticosterone and corticosterone. In turn, the excessive levels of mineralocorticoids lead to volume expansion and hypertension. Females with $17{\alpha}$-hydroxylase deficiency are characterized by primary amenorrhea and delayed puberty, with accompanying hypertension. Affected males usually have female external genitalia, a blind vagina, and intra-abdominal testes. The treatment of this disorder is centered on glucocorticoid and sex steroid replacement. In patients with $17{\alpha}$-hydroxylase deficiency who are being raised as females, estrogen should be supplemented, while genetically female patients with a uterus should also receive progesterone supplementation. Here, we report a case of a 21-year-old female with $17{\alpha}$-hydroxylase deficiency who had received inadequate treatment for a prolonged period of time. We also include a brief review of the recent literature on this disorder.

Microbial $9{\alpha}$-Hydroxylase:Epoxidation of 9(11)-dehydro-$17{\alpha}$-methyl-testosterone

  • Kang, Hee-Kyoung;Lee, Sang-Sup
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.525-528
    • /
    • 1997
  • Steroid $9{\alpha}$.-hydroxylase is a key enzyme system in steroid nucleus degradation in company with ${\Delta}$-dehydrogenase. To examine $9{\alpha}$-hydroxylase activity during microbial transformation of steroids, 9(11)-dehydro-$17{\alpha}$-methyl-testosterone was adopted as a stable substrate for preventing the rupture of steroid nucleus. Using Nocardia restrictus ATCC 14887 capable of introducing a $9{\alpha}$-hydroxyl group into steroids, $9{\alpha}$,$11{\alpha}$-oxido-$17{\beta}$-hydroxy-$17{\alpha}$-methyl-4-androstene-3-one and $9{\alpha}$-hydroxyl group into steroids,$9{\alpha}$,$11{\alpha}$-oxido-$17{\beta}$-hydroxy-$17{\alpha}$-methyl-1,4-androstadiene-3- one were obtained. These microbiologically transformed products could be used as reference compounds in the enzyme assay.

  • PDF

Vitamin D dependent rickets type I

  • Kim, Chan-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.2
    • /
    • pp.51-54
    • /
    • 2011
  • Vitamin D is present in two forms, ergocalciferol (vitamin $D_2$) produced by plants and cholecalciferol (vitamin $D_3$) produced by animal tissues or by the action of ultraviolet light on 7-dehydrocholesterol in human skin. Both forms of vitamin D are biologically inactive pro-hormones that must undergo sequential hydroxylations in the liver and the kidney before they can bind to and activate the vitamin D receptor. The hormonally active form of vitamin D, 1,25-dihydroxyvitamin D3 $[1,25(OH)_2D]$, plays an essential role in calcium and phosphate metabolism, bone growth, and cellular differentiation. Renal synthesis of $1,25(OH)_2D$ from its endogenous precursor, 25-hydroxyvitamin D (25OHD), is the rate-limiting and is catalyzed by the $1{\alpha}$-hydroxylase. Vitamin D dependent rickets type I (VDDR-I), also referred to as vitamin D $1{\alpha}$-hydroxylase deficiency or pseudovitamin D deficiency rickets, is an autosomal recessive disorder characterized clinically by hypotonia, muscle weakness, growth failure, hypocalcemic seizures in early infancy, and radiographic findings of rickets. Characteristic laboratory features are hypocalcemia, increased serum concentrations of parathyroid hormone (PTH), and low or undetectable serum concentrations of $1,25(OH)_2D$ despite normal or increased concentrations of 25OHD. Recent advances have showed in the cloning of the human $1{\alpha}$-hydroxylase and revealed mutations in its gene that cause VDDR-I. This review presents the biology of vitamin D, and $1{\alpha}$-hydroxylase mutations with clinical findings.

Synthesis of 7$\alpha$-Hydroxycephalosporin C by Immobilized Enzyme (고정화 효소를 이용한 7$\alpha$-hydroxycephalosporin C의 합성)

  • 김정근;강희일;박영훈;최용진;이종욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.164-169
    • /
    • 2001
  • The conversion of cephalosporin C to 7$\alpha$-hydroxycephalosporin C was examined with the cell-free extract of several cephamycin producing strains. Streptomyces clavuligerus ATCC 27064 was the most potent strain for the activity of cephalosporin 7$\alpha$-hydroxylase. Partially purified and immobilized cephalosporin 7$\alpha$-hydroxylase with resins were used to synthesize 7$\alpha$-hydroxycephalosporin C from the substrate, cephalosporin C. The molecular weight of the product isolated from the reaction mixture were determined to be 431 by ESI-Mass. $^1H$ NMR also support the conversion of cephalosporin C to 7$\alpha$-hydroxycephalosporin C by immobilized enzyme.

  • PDF

Effects of Hydroxylated Flavonoids on the Ethoxyresorufin O-deethylase and Benzo($\alpha$)pyrene Hydroxylase

  • Sun, Sun-Ho;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.514-519
    • /
    • 1996
  • In order to understand the mechanism of action of flavonoids on the drug metabolizing enzyme, cytochrome P450IA1, this study was undertaken to examine the effect of chrysin, morin, myricetin and aminopyrine on the activities of ethoxyresorufin O-deethylase and benzo(.alpha.) pyrene hydroxylase in the liver. In the isolated perfused rat liver that was pretreated with 3-methylcholanthrene (3MC), chrysin, morin, myricetin and aminopyrine inhibited the activity of ethoxyresorufin O-deethylase with concentration dependent manner. The isolated liver perfusion with chrysin, morin, myricetin and aminopyrine showed inhibition on the induction of ethoxyresorufin O- deethylase by 3MC. And also, in mouse liver hepa I cells, 3MC-stimulated the benzo(.alpha.)pyrene hydroxylase activity which was inhibited by chrysin, morin, myricetin and aminopyrine. These results strongly suggested that hydoxylated flavonoids interfered not only the induction of cytochrome P45OIA1 enzymes by 3MC but also the interaction of substrates and enzyme.

  • PDF

Novel Dioxygenases, HIF-α Specific Prolyl-hydroxylase and Asparanginyl-hydroxylase: O2 Switch for Cell Survival

  • Park, Hyun-Sung
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.101-107
    • /
    • 2008
  • Studies on hypoxia-signaling pathways have revealed novel Fe(II) and $\alpha$-ketoglutarate-dependent dioxygenases that hydroxylate prolyl or asparaginyl residues of a transactivator, Hypoxia-Inducible $Factor-\alpha(HIF-\alpha)$ protein. The recognition of these unprecedented dioxygenases has led to open a new paradigm that the hydroxylation mediates an instant post-translational modification of a protein in response to the changes in cellular concentrations of oxygen, reducing agents, or $\alpha$-ketoglutarate. Activity of $HIF-\alpha$ is repressed by two hydroxylases. One is $HIF-\alpha$ specific prolyl-hydroxylases, referred as prolyl-hydroxylase domain(PHD). The other is $HIF-\alpha$ specific asparaginyl-hydroxylase, referred as factor-inhibiting HIF-1(FIH-1). The facts (i) that many dioxygenases commonly use molecular oxygen and reducing agents during detoxification of xenobiotics, (ii) that detoxification reaction produces radicals and reactive oxygen species, and (iii) that activities of both PHD and FIH-1 are regulated by the changes in the balance between oxygen species and reducing agents, imply the possibility that the activity of $HIF-\alpha$ can be increased during detoxification process. The importance of $HIF-\alpha$ in cancer and ischemic diseases has been emphasized since its target genes mediate various hypoxic responses including angiogenesis, erythropoiesis, glycolysis, pH balance, metastasis, invasion and cell survival. Therefore, activators of PHDs and FIH-1 can be potential anticancer drugs which could reduce the activity of HIF, whereas inhibitors, for preventing ischemic diseases. This review highlights these novel dioxygenases, PHDs and FIH-1 as specific target against not only cancers but also ischemic diseases.

Regulatory Effect of 25-hydroxyvitamin $D_3$ on Nitric Oxide Production in Activated Microglia

  • Hur, Jinyoung;Lee, Pyeongjae;Kim, Mi Jung;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.397-402
    • /
    • 2014
  • Microglia are activated by inflammatory and pathophysiological stimuli in neurodegenerative diseases, and activated microglia induce neuronal damage by releasing cytotoxic factors like nitric oxide (NO). Activated microglia synthesize a significant amount of vitamin $D_3$ in the rat brain, and vitamin $D_3$ has an inhibitory effect on activated microglia. To investigate the possible role of vitamin $D_3$ as a negative regulator of activated microglia, we examined the effect of 25-hydroxyvitamin $D_3$ on NO production of lipopolysaccharide (LPS)-stimulated microglia. Treatment with LPS increased the production of NO in primary cultured and BV2 microglial cells. Treatment with 25-hydroxyvitamin $D_3$ inhibited the generation of NO in LPS-activated primary microglia and BV2 cells. In addition to NO production, expression of 1-${\alpha}$-hydroxylase and the vitamin D receptor (VDR) was also upregulated in LPS-stimulated primary and BV2 microglia. When BV2 cells were transfected with 1-${\alpha}$-hydroxylase siRNA or VDR siRNA, the inhibitory effect of 25-hydroxyvitamin $D_3$ on activated BV2 cells was suppressed. 25-Hydroxyvitamin $D_3$ also inhibited the increased phosphorylation of p38 seen in LPS-activated BV2 cells, and this inhibition was blocked by VDR siRNA. The present study shows that 25-hydroxyvitamin $D_3$ inhibits NO production in LPS-activated microglia through the mediation of LPS-induced 1-${\alpha}$-hydroxylase. This study also shows that the inhibitory effect of 25-hydroxyvitamin $D_3$ on NO production might be exerted by inhibiting LPS-induced phosphorylation of p38 through the mediation of VDR signaling. These results suggest that vitamin $D_3$ might have an important role in the negative regulation of microglial activation.

Characterization of Ovarian Cytochrome $P450_{C17}$ (17 ${\alpha}-hydroxylase$/17,20-lyase) in Rana dybowski (북방산 개구리 난소의 Cytochrome $P450_{C17}$ 유전자 특성)

  • Kang, Hae-Mook
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.127-133
    • /
    • 2006
  • [ $17\;{\alpha}-hydroxylase/17,20-lyase(P450_{C17})$ ] is the key enzyme mediating the conversion of progesterone to $17\;{\alpha}-hydroxyprogesterone$, ultimately to androstenedione during steroidogenesis. R. dybowskii's ovarian $P450_{C17}$ cDNA was cloned to understand the regulatory mechanism of ovarian steroidogenic pathway at the molecular level in amphibian. A 2.5kb cDNA clone encoding a single open-reading frame with a 519 deduced amino acid was isolated with the screening of ovarian cDNA library. This sequence contained the three highly conserved domains as seen in $P450_{C17}$ of other species. The comparison of amino acid sequence of Rana $P450_{C17}$ with other animal's $P450_{C17}$ showed relatively high identity with 76% in Xenopus, 63% in chicken, 60% in rainbow trout, and 45% in human. Phylogenic analysis also indicated that Rana $P450_{C17}$ gene was evolutionary well conserved among vertebrate. Northern analysis indicated that the two different sizes of $P450_{C17}$ transcripts with approximately 2.5 and 3.6kb were detected in ovary tissue, but not in other tissues. The expression vector of Rana $P450_{C17}$ clearly showed the $17\;{\alpha}-hydroxylase$ activity converting the exogenous progesterone into $17\;{\alpha}-hydroxyprogesterone$ in the nonsteroidogenic COS-1 cells. Therefore, Rana $P450_{C17}$ cDNA is very useful to investigate the molecular mechanism of the ovarian steroidogenesis in amphibian.

  • PDF

A Case of Male Pseudohermaphroditism due to 17α-Hydroxylase Deficiency (17α-Hydroxylase 결핍에 인한 남성가성반음양 1례)

  • Park, Keoung Ah;Chung, Youn Kyung;Lee, Jung Ryeol;Choi, Young Min;Lee, Gyoung Hoon;Kim, Hee Seung;Jee, Byung Chul;Ku, Seung Yup;Suh, Chang Suk;Kim, Seok Hyun;Kim, Jung Gu;Moon, Shin Yong;Kim, Seong Yeon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.133-138
    • /
    • 2006
  • Female phenotype of a 46,XY male may originates from male pseudohermaphroditism due to $17{\alpha}$-hydroxylase deficiency. Lack of cortisol increases adrenocorticotropic hormone (ACTH) and mineralocorticoid production, leading to low renin hypertention and hypokalemia. A 41-year-old phenotypic female presented primary amenorrhea and hypertension. In the hormonal profile, the levels of serum estradiol, testosterone, rennin, and cortisol were decreased and ACTH and deoxycorticosterone were increased. Laparoscopic bilateral gonadectomy was performed, and corticosteroid, antihypertensive drugs, and estrogen were administered. We report this case with a brief review of the literatures.

Complete Recovery of Oxysterol 7α-Hydroxylase Deficiency by Living Donor Transplantation in a 4-Month-Old Infant: the First Korean Case Report and Literature Review

  • Hong, Jeana;Oh, Seak Hee;Yoo, Han-Wook;Nittono, Hiroshi;Kimura, Akihiko;Kim, Kyung Mo
    • Journal of Korean Medical Science
    • /
    • v.33 no.51
    • /
    • pp.324.1-324.6
    • /
    • 2018
  • Oxysterol $7{\alpha}$-hydroxylase deficiency is a very rare liver disease categorized as inborn errors of bile acid synthesis, caused by CYP7B1 mutations. As it may cause rapid progression to end-stage liver disease even in early infancy, a high index of suspicion is required to prevent fatal outcomes. We describe the case of a 3-month-old boy with progressive cholestatic hepatitis and severe hepatic fibrosis. After excluding other etiologies for his early liver failure, we found that he had profuse urinary excretion of $3{\beta}$-monohydroxy-${\Delta}^5$-bile acid derivatives by gas chromatography/mass spectrometry analysis with dried urine spots on filter paper. He was confirmed to have a compound heterozygous mutation (p.Arg388Ter and p.Tyr469IlefsX5) of the CYP7B1 gene. After undergoing liver transplantation (LT) from his mother at 4 months of age, his deteriorated liver function completely normalized, and he had normal growth and development until the current follow-up at 33 months of age. We report the first Korean case of oxysterol $7{\alpha}$-hydroxylase deficiency in the youngest infant reported to undergo successful living donor LT to date.