• Title/Summary/Keyword: 18-MEA

Search Result 46, Processing Time 0.02 seconds

Study on sampling methods for mold from indoor air in domestic environment (국내 환경에서 실내 부유진균 포집 방법 연구)

  • Ahn, Geum Ran;Kim, Bo Young;Kim, Ji Eun;Son, Bu Sun;Park, Moo-Kyun;Kim, Sung-Yeon;Kwon, Myung-Hee;Kim, Seong Hwan
    • Journal of odor and indoor environment
    • /
    • v.16 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Mold is one of the important bio-aerosols affecting human health in the indoor environment. To manage mold contamination, it is necessary to use an appropriate method for its detection and enumeration. Recently, the impaction method of ISO 16000-18 has been established as one of methods to detect and enumerate molds in air. To investigate the general use of the impaction method for mold detection in domestic indoor environments, the suitability of the method was assessed using different antibiotics, media and air samplers. All of the three antibiotics tested - ampicillin, chloramphenicol and streptomycin - showed inhibitory effects on bacterial colony formation on MEA and DG-18 media, without inhibiting mold growth. Of these three antibiotics, ampicillin was the most effective. There was no statistical difference between MEA and DG-18 media in the measurement of mold concentration. The formation of discriminative colony morphology was more apparent in DG-18 media. No significant difference in the measurement of mold concentration was found between Andersen samplers and MAS-100NT samplers, which are two major samplers introduced in Korea.

Absorption of Carbon Dioxide into Aqueous Potassium Salt of Serine (Serine 칼륨염 수용액의 이산화탄소 흡수특성)

  • Song, Ho-Jun;Lee, Seung-Moon;Lee, Joon-Ho;Park, Jin-Won;Jang, Kyung-Ryong;Shim, Jae-Goo;Kim, Jun-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.505-514
    • /
    • 2009
  • Aqueous potassium salt of serine was proposed as an alternative $CO_2$ absorbent to monoethanolamine (MEA) and its $CO_2$ absorption characteristics were studied. The experiment has been conducted using screening test equipment with NDIR type gas analyzer and vapor-liquid equilibrium apparatus. $CO_2$ absorption/desorption rate and net amount of $CO_2$ absorbed in cyclic process are the criteria to assess the $CO_2$ absorption characteristics in this study. Effective $CO_2$ loading of potassium salt of serine and MEA are 0.425 and 0.230 respectively. Cyclic capacities are 0.354 and 0.298 for potassium salt of serine and MEA. The absorption rate of the potassium serinate decreased sharply at $CO_2$ loading is 0.1 and were maintained approximately at half of MEA. To enhance the absorption rate of aqueous potassium salt of serine, small quantities of rate promoters, namely piperazine and tetraethylenepentamine were blended, so that rich $CO_2$ loading were increased by 13.7% and 18.7% respectively. The rich $CO_2$ loading of potassium salt of serine was 29.2% and 35.0% higher than those of aqueous sodium and lithium salt of serine, respectively. The absorption rate of potassium salt of valine and isoleucine which have similar molecular structures to serine were lower than that of serine because of the presence of bulky side group. Precipitation phenomena during $CO_2$ absorption were discussed by the aid of literatures.

Neocucurbitaria chlamydospora sp. nov.: A Novel Species of the Family Cucurbitariaceae Isolated from a Stink Bug in Korea

  • Soo-Min Hong;Kallol Das;Seong-Keun Lim;Sang Jae Suh;Seung-Yeol Lee;Hee-Young Jung
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.115-121
    • /
    • 2023
  • The fungal strain KNUF-22-18B, belonging to Cucurbitariaceae, was discovered from a stink bug (Hygia lativentris) during the investigation of insect microbiota in Chungnam Province, South Korea. The colonies of the strain KNUF-22-18B were wooly floccose, white to brown in the center on oatmeal agar (OA), and the colonies were buff, margin even, and colorless, reverse white to yellowish toward the center on malt extract agar (MEA). The strain KNUF-22-18B produced pycnidia after 60 days of culturing on potato dextrose agar, but pycnidia were not observed on OA. On the contrary, N. keratinophila CBS 121759T abundantly formed superficial pycnidia on OA and MEA after a few days. The strain KNUF-22-18B produced chlamydospores subglobose to globose, mainly in the chain, with a small diameter of 4.4-8.8 ㎛. At the same time, N. keratinophila CBS 121759T displayed a globose terminal with a diameter of 8-10 ㎛. A multilocus phylogeny using the internal transcribed spacer regions, 28S rDNA large subunit, b-tubulin, and RNA polymerase II large subunit genes further validated the uniqueness of the strain. The detailed description and illustration of the proposed species as Neocucurbitaria chlamydospora sp. nov. from Korea was strongly supported by molecular phylogeny.

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

Effect of Water Activity and Temperature on Growth, Germination, Sporulation, and Utilization of Carbon Source of Penicillium oxalicum (PENOX) as a Biocontrol Agent(BCA) for control of Clover(Trifolium repens L.) (토끼풀(Trifolium repens L.) 방제용 생물제제 Penicillium oxalicum (PENOX)의 발아, 생장, 포자생성 및 탄소원이용에 미치는 수분활성 및 온도의 영향)

  • Lee, Hyang-Burm;Kim, Chang-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.68-74
    • /
    • 2000
  • Penicillium oxalicum (PENOX) has shown the potential as a biocontrol agent(5CA) for control of a weed, clover(Trifolium repens L.) in grass plots. The bioherbicidal activity may be due to germinative and growth capacities and substrate availability of the agent over a range of environmental factors. The influences of different water activities($0.94{\sim}0.995\;a_w$) and temperatures($18{\sim}30^{\circ}C$) on mycelial growth, conidial germination, sporulation oil 2% MEA(malt extract agar) adjusted to different water activities with glycerol, and carbon source utilization using BIOLOG GN MicroPlate were determined in vitro. Decreases in $a_w$ on MEA caused a reduction in mycelial growth and conidial germination depending on temperature. The mycelial growth of PENOX was greatest at $30^{\circ}C/0.995\;a_w$. At some lowered water activity($0.97\;a_w$), the growth was similar between 25 and $30^{\circ}C$, and considerably decreased at lowered temperature($20^{\circ}C$). The germination rate was also greatest at $30^{\circ}C/0.995\;a_w$. Lag phase times for PENOX at $18^{\circ}C$ on MEA were >6hrs at tile whole $a_w$ level tested, and at 18 and $25^{\circ}C$ they were >18hrs and >12hrs at $0.94\;a_w$, respectively. However, its sporulation was some better at $0.97\;a_w$ than $0.995\;a_w$ or $0.94\;a_w$, and better at $20^{\circ}C$ than $30^{\circ}C$. In contrast, the number of carbon sources(niche size) utilized by PENOX varied with $a_w$ and temperature. Under some water stress condition($0.95\;a_w$), the agent utilized smaller number of carbon sources than $0.995\;a_w$ depending on temperature. The niche size at 0.995 and $0.95\;a_w$ were highest at $25^{\circ}C$, and showed 86 and 65, respectively. At $30^{\circ}C$, the niche size at 0.995 and $0.95\;a_w$ showed 84 and 50, respectively. There was no carbon source utilized by PENOX at $0.90\;a_w$ regardless of temperature. These information of tile fungal ecophysiology will be useful for the effective development of BCA.

  • PDF

Analyzing the Effects of MEA Designs on Cold Start Behaviors of Automotive Polymer Electrolyte Fuel Cell Stacks (자동차용 고분자전해질형연료전지 스택에서의 막-전극접합체 설계인자가 저온시동에 미치는 영향성 연구)

  • Gwak, Geon-Hui;Ko, Jo-Han;Ju, Hyun-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • This paper presents a three-dimensional, transient cold-start polymer electrolyte fuel cell (PEFC) model to numerically evaluate the effects of membrane electrode assembly (MEA) design and cell location in a PEFC stack on PEFC cold start behaviors. The cold-start simulations show that the end cell experiences significant heat loss to the sub-freezing ambient and thus finally cold-start failure due to considerable ice filling in the cathode catalyst layer. On the other hand, the middle cells in the stack successfully start from $-30^{\circ}C$ sub-freezing temperature due to rapid cell temperature rise owing to the efficient use of waste heat generated during the cold-start. In addition, the simulation results clearly indicate that the cathode catalyst layer (CL) composition and thickness have an substantial influence on PEFC cold-start behaviors while membrane thickness has limited effect mainly due to inefficient water absorption and transport capability at subzero temperatures.

Effect of organic solvents on catalyst structure of PEM fuel cell electrode fabricated via electrospray deposition

  • Koh, Bum-Soo;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.18 no.11
    • /
    • pp.810-814
    • /
    • 2017
  • Proton exchange membrane fuel cells (PEMFCs) are some of the most efficient electrochemical energy sources for transportation applications because of their clean, green, and high efficiency characteristics. The optimization of catalyst layer morphology is considered a feasible approach to achieve high performance of PEMFC membrane electrode assembly (MEA). In this work, we studied the effect of the solvent on the catalyst layer of PEMFC MEAs fabricated using the electrostatic spray deposition method. The catalyst ink comprised of Pt/C, a Nafion ionomer, and a solvent. Two types of solvent were used: isopropyl alcohol (IPA) and dimethylformamide (DMF). Compared with the catalyst layer prepared using IPA-based ink, the catalyst layer prepared with DMF-based ink had a dense structure because the DMF dispersed the Pt/C-Nafion agglomerates smaller and more homogeneously. The size distribution of the agglomerates in catalyst ink was confirmed through Dynamic Light Scattering (DLS) and the microstructure of the catalyst layer was compared using field emission scanning electron microscopy (FE-SEM). In addition, the electrochemical investigation was performed to evaluate the solvent effect on the fuel cell performance. The catalyst layer prepared with DMF-based ink significantly enhanced the cell performance (1.2 A cm-2 at 0.5 V) compared with that fabricated using IPA-based ink (0.5 A cm-2 at 0.5 V) due to the better dispersion and uniform agglomeration on the catalyst layer.

Spatiotemporal Analysis of Retinal Waveform using Independent Component Analysis in Normal and rd/rd Mouse (독립성분분석을 이용한 정상 마우스와 rd/rd 마우스 망막파형의 시공간적 분석)

  • Ye, Jang-Hee;Kim, Tae-Seong;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • It is expected that synaptic construction and electrical characteristics In degenerate retina might be different from those In normal retina. Therefore, we analyzed the retinal waveform recorded with multielectrode array in normal and degenerate retina using principal component analysis (PCA) and Independent component analysis (ICA) and compared the results. PCA Is a well established method for retinal waveform while ICA has not tried for retinal waveform analysis. We programmed ICA toolbox for spatiotemporal analysis of retinal waveform. In normal mouse, the MEA spatial map shows a single hot spot perfectly matched with PCA-derived ON or OFF ganglion cell response. However In rd/rd mouse, the MEA spatial map shows numerous hot and cold spots whose underlying interactions and mechanisms need further Investigation for better understanding.

  • PDF

Electrochemical and Mechanical Characteristics of Covalently Cross-Linked SPEEK Polymer Electrolyte Membrane for Water Electrolysis (수전해용 공유가교 SPEEK 고분자 전해질 막의 전기 화학적 및 기계적 특성)

  • Kim, Kyung-Eon;Jang, In-Young;Kweon, Oh-Hwan;Hwang, Yong-Koo;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.391-398
    • /
    • 2007
  • The covalently cross-linked sulfonated polyetheretherketone (CL-SPEEK) membrane was prepared by four-step synthesis of sulfonation-sulfochlorination, partial reduction, lithiation, and cross-linking, and its electrochemical and mechanical properties were investigated for water electrolysis application. The prepared ion exchange membranes showed good electrochemical and mechanical properties; proton conductivity of 0.116 S/cm at $80^{\circ}C$, water uptake of 44.6%, ion exchange capacity of 1.75 meq/g-dry-memb., tensile strength of 64.25 MPa and elongation of 61.11%. The membrane electrode assembly (MEA) with homemade membranes were prepared by non-equilibrium impregnation-reduction (I-R) method. Especially, the electrochemical surface area (ESA) and roughness factor of CL-SPEEK electrolyte by cyclic voltammetry method were 23.46 $m^2/g$ and 307.3 $cm^2-Pt/cm^2$, respectively. The prepared MEA was used in the unit cell of water electrolysis and the cell voltage was 1.81 V at 1 A/$cm^2$ and $80^{\circ}C$, with platinum loadings of 1.31 mg/$cm^2$.

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells (고체 고분자 연료전지용 비백금계 산소환원촉매 조성 조사 및 분석)

  • Kwon, Kyung-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.