DOI QR코드

DOI QR Code

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells

고체 고분자 연료전지용 비백금계 산소환원촉매 조성 조사 및 분석

  • Kwon, Kyung-Jung (Department of Energy & Mineral Resources Engineering, Sejong University)
  • 권경중 (세종대학교 에너지자원공학과)
  • Received : 2011.11.20
  • Accepted : 2012.01.12
  • Published : 2012.02.28

Abstract

The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.

다양한 응용분야에서 활용될 수 있는 고체고분자연료전지의 경우 현재 상용화에 가장 큰 걸림돌이 되고 있는 것이 고가의 백금 촉매이다. 따라서 특히 최근 들어 산소환원반응에서 백금을 대체하는 물질을 개발하기 위한 연구가 전세계적으로 확산되고 있다. 그러나 촉매 개발 시 경제성 관점 외에 내구성도 고려해야 하는데, 이런 관점에서 백금과 유사한 물성과 활성이 기대되는 백금족 원소들이 한 대안이 될 것이다. 가장 백금과 유사한 물성, 활성을 나타내는 팔라듐과 칼코겐화물 형태의 루테늄이 지금까지 가장 많이 연구가 되었으며 상대적으로 이리듐, 로듐, 오스뮴은 산소환원 촉매로 많은 연구가 되지 않았다. RDE (rotating disk electrode)를 이용한 반쪽전지 실험이나 연료전지 MEA (membrane electrode assembly) 운전을 통하여 백금과 활성을 비교해보면 팔라듐 계열의 비백금 촉매가 가장 백금에 가까운 활성을 나타내고 있음을 알 수 있다. 이 논문에서는 각 백금족 원소들 기반의, 현재까지 문헌상으로 보고된 촉매조성들을 분석하여 비백금 산소환원 촉매 개발에 도움이 되고자 한다.

Keywords

References

  1. R. Bashyam and P. Zelenay, 'A class of non-precious metal composite catalysts for fuel cells' Nature, 443, 63 (2006). https://doi.org/10.1038/nature05118
  2. G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, 'High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt' Science, 332, 443 (2011). https://doi.org/10.1126/science.1200832
  3. M. Lefevre, E. Proietti, F. Jaouen, and J.-P. Dodelet, 'Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells' Science, 324, 71 (2009). https://doi.org/10.1126/science.1170051
  4. E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, and J.-P. Dodelet, 'Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells' Nature Commun., 2, 416 (2011). https://doi.org/10.1038/ncomms1427
  5. K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai, 'Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction' Science, 323, 760 (2009). https://doi.org/10.1126/science.1168049
  6. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, 'Origin of the overpotential for oxygen reduction at a fuel-cell cathode' J. Phys. Chem. B, 108, 17886 (2004). https://doi.org/10.1021/jp047349j
  7. V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, and N. M. Markovic, 'Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces' Nature Mater., 6, 241 (2007). https://doi.org/10.1038/nmat1840
  8. J. L. Fernandez, D. A. Walsh, and A. J. Bard, 'Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M: Pd, Ag, Au)' J. Am. Chem. Soc., 127, 357 (2005). https://doi.org/10.1021/ja0449729
  9. V. Raghuveer, P. J. Ferreira, and A. Manthiram, 'Comparison of Pd-Co-Au electrocatalysts prepared by conventional borohydride and microemulsion methods for oxygen reduction in fuel cells' Electrochem. Commun., 8, 807 (2006). https://doi.org/10.1016/j.elecom.2006.03.022
  10. L. Zhang, J. Zhang, Z. Jiang, S. Xie, M. Jin, X. Han, Q. Kuang, Z. Xie, and L. Zheng, 'Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres' J. Mater. Chem., 21, 9620 (2011). https://doi.org/10.1039/c0jm04407e
  11. Y.-C. Yeh, H. M. Chen, R.-S. Liu, K. Asakura, M.-Y. Lo, Y.-M. Peng, T.-S. Chan and J.-F. Lee, 'Pd-C-Fe nanoparticles investigated by X-ray absorption spectroscopy as electrocatalysts for oxygen reduction' Chem. Mater., 21, 4030 (2009). https://doi.org/10.1021/cm901383x
  12. K. Lee, O. Savadogo, A. Ishihara, S. Mitsushima, N. Kamiya, and K. Ota, 'Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells' J. Electrochem. Soc., 153, A20 (2006). https://doi.org/10.1149/1.2128101
  13. D. C. Martinez-Casillas, G. Vazquez-Huerta, J. F. Perez-Robles, and O. Solorza-Feria, 'Electrocatalytic reduction of dioxygen on PdCu for polymer electrolyte membrane fuel cells' J. Power Sources, 196, 4468 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.050
  14. W. Li and P. Haldar, 'Supportless PdFe nanorods as highly active electrocatalyst for proton exchange membrane fuel cell' Electrochem. Commun., 11, 1195 (2009). https://doi.org/10.1016/j.elecom.2009.03.046
  15. R. Wang, S. Liao, Z. Fu, and S. Ji, 'Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction' Electrochem. Commun., 10, 523 (2008). https://doi.org/10.1016/j.elecom.2008.01.030
  16. D. A. Walsh, J. L. Fernandez, and A. J. Bard, 'Rapid screening of bimetallic electrocatalysts for oxygen reduction in acidic media by scanning electrochemical microscopy' J. Electrochem. Soc., 153, E99 (2006). https://doi.org/10.1149/1.2186208
  17. A. Sarkar, A. V. Murugan, and A. Manthiram, 'Synthesis and characterization of nanostructured Pd-Mo electrocatalysts for oxygen reduction reaction in fuel cells' J. Phys. Chem. C, 112, 12037 (2008). https://doi.org/10.1021/jp801824g
  18. J. Zhao, A. Sarkar, and A. Manthiram, 'Synthesis and characterization of Pd-Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells' Electrochim. Acta, 55, 1756 (2010). https://doi.org/10.1016/j.electacta.2009.10.061
  19. L. Cheng, Z. Zhang, W. Niu, G. Xua, and L. Zhu, 'Carbonsupported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction' J. Power Sources, 182, 91 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.024
  20. A. A. Serov, S.-Y. Cho, S. Han, M. Min, G. Chai, K. H. Nam, and C. Kwak, 'Modification of palladium-based catalysts by chalcogenes for direct methanol fuel cells' Electrochem. Commun., 9, 2041 (2007). https://doi.org/10.1016/j.elecom.2007.06.005
  21. M. R. Miah, J. Masud, and T. Ohsaka, 'Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media' Electrochim. Acta, 56, 285 (2010). https://doi.org/10.1016/j.electacta.2010.08.082
  22. J. L. Fernandez, V. Raghuveer, A. Manthiram, and A. J. Bard, 'Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells' J. Am. Chem. Soc., 127, 13100 (2005). https://doi.org/10.1021/ja0534710
  23. S.-Y. Ang and D. A. Walsh, 'Palladium-vanadium alloy electrocatalysts for oxygen reduction: Effect of heat treatment on electrocatalytic activity and stability' Appl. Catal. B-Environ., 98, 49 (2010). https://doi.org/10.1016/j.apcatb.2010.04.025
  24. A. Sarkar, A. V. Murugan, and A. Manthiram, 'Low cost Pd-W nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells' J. Mater. Chem., 19, 159 (2009). https://doi.org/10.1039/b812722k
  25. K. Lee, L. Zhang, and J. Zhang, '$Ir_{x}Co_{1-x}$ (x = 0.3-1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction' J. Power Sources, 170, 291 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.043
  26. J. Qiao, B. Li, D. Yang, and J. Ma, 'High PEMFC performance by applying Ir-V nanoparticles as a cathode catalyst' Appl. Catal. B-Environ., 91, 198 (2009). https://doi.org/10.1016/j.apcatb.2009.05.024
  27. J. Ma, D. Ai, X. Xie, and J. Guo, 'Novel methanoltolerant Ir-S/C chalcogenide electrocatalysts for oxygen reduction in DMFC fuel cell' Particuology, 9, 155 (2011). https://doi.org/10.1016/j.partic.2010.05.015
  28. G. Liu and H. Zhang, 'Facile synthesis of carbon-supported $Ir_{x}Se_{y}$ chalcogenide nanoparticles and their electrocatalytic activity for the oxygen reduction reaction' J. Phys. Chem. C, 112, 2058 (2008). https://doi.org/10.1021/jp077032u
  29. D. C. Papageorgopoulos, F. Liu, and O. Conrad, 'A study of $Rh_{x}S_{y}/C$ and $RuSe_{x}/C$ as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications' Electrochim. Acta 52, 4982 (2007). https://doi.org/10.1016/j.electacta.2007.01.076
  30. D. Cao, A. Wieckowski, J. Inukai, and N. Alonso-Vante, 'Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur' J. Electrochem. Soc., 153, A869 (2006). https://doi.org/10.1149/1.2180709
  31. J. M. Ziegelbauer, A.F. Gulla, C. O'Laoire, C. Urgeghe, R. J. Allen, and S. Mukerjee, 'Chalcogenide electrocatalysts for oxygen-depolarized aqueous hydrochloric acid electrolysis' Electrochim. Acta, 52, 6282 (2007). https://doi.org/10.1016/j.electacta.2007.04.048
  32. J. M. Ziegelbauer, V. S. Murthi, C. O'Laoire, A. F. Gulla, and S. Mukerjee, 'Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications' Electrochim. Acta, 53, 5587 (2008). https://doi.org/10.1016/j.electacta.2008.02.091
  33. N. Alonso-Vante and H. Tributsch, 'Energy conversion catalysis using semiconducting transition metal cluster compounds' Nature, 323, 431 (1986). https://doi.org/10.1038/323431a0
  34. A. Garsuch, X. Michaud, K. Bohme, G. Wagner, and J. R. Dahn, 'Fuel cell performance of templated Ru/Se/C-based catalysts' J. Power Sources, 189, 1008 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.078
  35. K. Suarez-Alcantara and O. Solorza-Feria, 'Comparative study of oxygen reduction reaction on $Ru_{x}M_{y}Se_{z}$ (M = Cr, Mo, W) electrocatalysts for polymer exchange membrane fuel cell' J. Power Sources, 192, 165 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.118
  36. Y. Hara, N. Minami, and H. Itagaki, 'Electrocatalytic properties of ruthenium modified with Te metal for the oxygen reduction reaction' Appl. Catal. A-Gen., 340, 59 (2008). https://doi.org/10.1016/j.apcata.2008.01.036
  37. R. W. Reeve, P. A. Christensen, A. J. Dickinson, A. Hamnett, and K. Scott, 'Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation' Electrochim. Acta, 45, 4237 (2000). https://doi.org/10.1016/S0013-4686(00)00556-9
  38. K. Suarez-Alcantara, A. Rodriguez-Castellanos, R. Dante, and O. Solorza-Feria, '$Ru_{x}M_{y}Se_{z}$ electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell' J. Power Sources, 157, 114 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.065
  39. S.-P. Chiao, D.-S. Tsai, D. P. Wilkinson, Y.-M. Chen, and Y.-S. Huang, 'Carbon supported $Ru_{1-x}Fe_{y}Se_{y}$ electrocatalysts of pyrite structure for oxygen reduction reaction' Int. J. Hydrogen Energy, 35, 6508 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.032
  40. K. Suarez-Alcantara and O. Solorza-Feria, 'Kinetics and PEMFC performance of $Ru_xMo_ySe_z$ nanoparticles as a cathode catalyst' Electrochim. Acta, 53, 4981 (2008). https://doi.org/10.1016/j.electacta.2008.02.025
  41. K. Suarez-Alcantara and O. Solorza-Feria, 'Evaluation of $Ru_{x}W_{y}Se_{z}$ catalyst as a cathode electrode in a polymer electrolyte membrane fuel cell' Fuel Cells, 10, 84 (2010).
  42. E. Borja-Arco, R. H. Castellanos, J. Uribe-Godinez, A. Altamirano-Gutierrez, and O. Jimenez-Sandoval, 'Osmiumruthenium carbonyl clusters as methanol tolerant electrocatalysts for oxygen reduction' J. Power Sources, 188, 387 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.021
  43. O. Solorza-Feria, S. Citalan-Cigarroa, R. Rivera-Noriega, and S. M. Fernandez-Valverde, 'Oxygen reduction in acid media at the amorphous Mo-Os-Se carbonyl cluster coated glassy carbon electrodes' Electrochem. Commun., 1, 585 (1999). https://doi.org/10.1016/S1388-2481(99)00117-4
  44. T. J. Schmidt and H. A. Gasteiger, Chap. 22 in Handbook of Fuel Cells, W. Vielstich, A. Lamm and H. A. Gasteiger, Eds., John Wiley & Sons Ltd, England (2003).
  45. J. Zhang, K. Sasaki, E. Sutter, and R. R. Adzic, 'Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters' Science, 315, 220 (2007). https://doi.org/10.1126/science.1134569
  46. H. Liu and A. Manthiram, 'Controlled synthesis and characterization of carbon-supported $Pd_4Co$ nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells' Energy Environ. Sci., 2, 124 (2009). https://doi.org/10.1039/b814708f

Cited by

  1. Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes vol.16, pp.1, 2013, https://doi.org/10.5229/JKES.2013.16.1.52
  2. Study on Power Characteristics in the PEMFC Parallel Channel with Baffles through Numerical Analysis vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.193